This paper introduces a new disturbance estimation scheme, and a possible application to relative output stabilization of multiple systems. Using the proposed disturbance estimation scheme, total unknown external disturbance applied to a plant is estimated and compensated. Moreover, the model difference between an actual system and a desired system is also estimated and compensated. For the purpose of general use of the disturbance estimation scheme as an unknown input observer (UIO), a parameterized design method is given, even for the unstable and nonminimum phase systems. For the relative output stabilization of multiple systems, second-order consensus algorithm is additionally used. A case study, simulations, and experimental tests sequentially validate the proposed estimation and control methods.

References

1.
Zhongyi
,
C.
,
Fuchun
,
S.
, and
Jing
,
C.
,
2008
, “
Disturbance Observer-Based Robust Control of Free-Floating Space Manipulators
,”
IEEE Syst. J.
,
2
(
1
), pp.
114
119
.10.1109/JSYST.2007.914871
2.
Dong
,
W.
, and
Kuhnert
,
K. D.
,
2005
, “
Robust Adaptive Control of Nonholonomic Mobile Robot With Parameter and Nonparameter Uncertainties
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
261
266
.10.1109/TRO.2004.837236
3.
Lai
,
C. Y.
,
Lewis
,
F. L.
,
Venkataramanan
,
V.
,
Ren
,
X.
,
Ge
,
S. S.
, and
Liew
,
T.
,
2010
, “
Disturbance and Friction Compensations in Hard Disk Drives Using Neural Networks
,”
IEEE Trans. Ind. Electron.
,
57
(
2
), pp.
784
792
.10.1109/TIE.2009.2027257
4.
Lee
,
M.-N.
, and
Jin
,
K. B.
,
2005
, “
An Optimal Tracking Controller Design Based on the Estimation of Tracking Vibration Quantity
,”
IEEE Trans. Consum. Electron.
,
51
(
2
), pp.
478
484
.10.1109/TCE.2005.1467990
5.
Diolaiti
,
N.
,
Niemeyer
,
G.
,
Barbagli
,
F.
, and
Salisbury
,
J. K.
,
2006
, “
Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
256
268
.10.1109/TRO.2005.862487
6.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier
,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
143
153
.10.1109/TMECH.2007.892831
7.
Luo
,
Y.
, and
Chen
,
Y.
,
2012
,
Fractional Order Disturbance Observer, in Fractional Order Motion Controls
,
Wiley
,
Chichester, UK
, pp.
223
236
.
8.
Jia
,
Q. W.
,
2009
, “
Disturbance Rejection Through Disturbance Observer With Adaptive Frequency Estimation
,”
IEEE Trans. Magn.
,
45
(
6
), pp.
2675
2678
.10.1109/TMAG.2009.2024311
9.
Katsura
,
S.
,
Matsumoto
,
Y.
, and
Ohnishi
,
K.
,
2007
, “
Modeling of Force Sensing and Validation of Disturbance Observer for Force Control
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
530
538
.10.1109/TIE.2006.885459
10.
Ahn
,
H.-S.
, and
Chen
,
Y.
,
2009
, “
State-Dependent Friction Force Compensation Using Periodic Adaptive Learning Control
,”
Mechatronics
,
19
(
6
), pp.
896
904
.10.1016/j.mechatronics.2009.05.007
11.
Nicosia
,
S.
, and
Tomei
,
P.
,
1990
, “
Robot Control by Using Only Joint Position Measurements
,”
IEEE Trans. Autom. Control
,
35
(
9
), pp.
1058
1061
.10.1109/9.58537
12.
Nicosia
,
S.
,
Tomei
,
P.
, and
Tornambé
,
A.
,
1988
, “
A Nonlinear Observer for Elastic Robots
,”
IEEE J. Rob. Autom.
,
4
(
1
), pp.
45
52
.10.1109/56.770
13.
Liu
,
C.-S.
, and
Peng
,
H.
,
2002
, “
Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
3
), pp.
375
381
.10.1115/1.1485748
14.
Schrijver
,
E.
, and
Van Dijk
,
J.
,
2002
, “
Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
4
), pp.
539
548
.10.1115/1.1513570
15.
Ren
,
W.
,
2008
, “
On Consensus Algorithms for Double-Integrator Dynamics
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1503
1509
.10.1109/TAC.2008.924961
16.
Yucelen
,
T.
, and
Johnson
,
E. N.
,
2013
, “
Control of Multivehicle Systems in the Presence of Uncertain Dynamics
,”
Int. J. Control
,
86
(
9
), pp.
1540
1553
.10.1080/00207179.2013.790077
17.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E. M.
,
2005
, “
A Survey of Consensus Problems in Multi-Agent Coordination
,”
American Control Conference
, IEEE, Portland, OR, June 8–10, pp.
1859
1864
.
18.
Goodwin
,
G. C.
,
Graebe
,
S. F.
, and
Salgado
,
M. E.
,
2001
,
Control System Design
,
Prentice Hall
,
Upper Saddle River
,
NJ
, Vol.
240
.
19.
Staffans
,
O. J.
,
Staffans
,
O. J.
,
Staffans
,
O. J.
, and
Staffans
,
O. J.
,
2005
,
Well-Posed Linear Systems
,
Cambridge University
,
Cambridge
, UK, Vol.
103
.
20.
Olfati-Saber
,
R.
,
Fax
,
J. A.
, and
Murray
,
R. M.
,
2007
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
(
1
), pp.
215
233
.10.1109/JPROC.2006.887293
You do not currently have access to this content.