Heating, ventilation, and air conditioning systems in large buildings frequently feature a network topology wherein the outputs of each dynamic subsystem act as disturbances to other subsystems. The distributed optimization technique presented in this paper leverages this topology without requiring a centralized controller or widespread knowledge of the interaction dynamics between subsystems. Each subsystem's controller calculates an optimal steady state condition. The output corresponding to this condition is then communicated to downstream neighbors only. Similarly, each subsystem communicates to its upstream neighbors the predicted costs imposed by the neighbors' own calculated outputs. By judicious construction of the cost functions, all of the cost information is propagated through the network, allowing a Pareto optimal solution to be reached. The novelty of this approach is that communication between all plants is not necessary to achieve a global optimum. Since each optimizer does not require knowledge of its neighbors' dynamics, changes in one controller do not require changes to all controllers in the network. Proofs of convergence to Pareto optimality under certain conditions are presented, and convergence under the approach is demonstrated with a simulation example. The approach is also applied to a laboratory-based water chiller system; several experiments demonstrate the features of the approach and potential for energy savings.

References

References
1.
U. S. Dept. of. Energy, 2012, Annual Energy Review 2011.
2.
U.S. Dept. of Energy Information Administration, 2009, Emissions of Greenhouse Gases in the United States 2008.
3.
Brown
,
R. E.
, and
Koomey
,
J. G.
,
2003
, “
Electricity Use in California: Past Trends and Present Usage Patterns
,”
Energy Policy
,
31
(
9
), pp.
849
864
.10.1016/S0301-4215(02)00129-5
4.
Camacho
,
E. F.
, and
Bordons
,
C.
,
2004
, “
Model Predictive Control
,”
Advanced Textbooks in Control and Signal Processing
,
Springer
,
London/New York
.
5.
Mayne
,
D.
,
Rawlings
,
J.
,
Rao
,
C.
, and
Scokaert
,
P.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
6.
Qin
,
S.
, and
Badgwell
,
T.
,
2003
, “
A Survey of Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.10.1016/S0967-0661(02)00186-7
7.
Garcia
,
C. E.
,
Prett
,
D. M.
, and
Moriari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice—A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.10.1016/0005-1098(89)90002-2
8.
Leducq
,
D.
,
Guilpart
,
J.
, and
Trystam
,
G.
,
2006
, “
Non-Linear Predictive Control of a Vapour Compression Cycle
,”
Int. J. Refrigeration
,
29
(
5
), pp.
761
772
.10.1016/j.ijrefrig.2005.12.005
9.
Elliott
,
M. S.
, and
Rasmussen
,
B. P.
,
2008
, “Model-Based Predictive Control of a Multi-Evaporator Vapor Compression Cooling Cycle,”
American Control Conference
, Seattle, WA, June 11–13.10.1109/ACC.2008.4586698
10.
Elliott
,
M. S.
, and
Rasmussen
,
B. P.
,
2009
, “A Model-Based Predictive Supervisory Controller for Multi-Evaporator HVAC Systems,”
American Control Conference
, St. Louis, MO, June 10–12.10.1109/ACC.2009.5160498
11.
Huang
,
G.
,
Wang
,
S.
, and
Xu
,
X.
,
2009
, “
A Robust Model Predictive Control Strategy for Improving the Control Performance of Air-Conditioning Systems
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2650
2658
.10.1016/j.enconman.2009.06.014
12.
Xi
,
X.-C.
,
Poo
,
A.-N.
, and
Chou
,
S.-K.
,
2007
, “
Support Vector Regression Model Predictive Control on a HVAC Plant
,”
Control Eng. Pract.
,
15
(
8
), pp.
897
908
.10.1016/j.conengprac.2006.10.010
13.
Xu
,
M.
,
Li
,
S.
, and
Cai
,
W.
,
2005
, “
Practical Receding-Horizon Optimization Control of the Air Handling Unit in Hvac Systems
,”
Ind. Chem. Eng. Res.
,
44
(
8
), pp.
2848
2855
.10.1021/ie0499411
14.
Muske
,
K. R.
, and
Badgwell
,
T. A.
,
2002
, “
Disturbance Modeling for Offset-Free Linear Model Predictive Control
,”
J. Process Control
,
12
(
5
), pp.
617
632
.10.1016/S0959-1524(01)00051-8
15.
Jia
,
D.
, and
Krogh
,
B. H.
,
2001
, “Distributed Model Predictive Control,” 2001
American Control Conference
, Arlington, VA, June 25–27.10.1109/ACC.2001.946306
16.
Venkat
,
A. N.
,
Rawlings
,
J.
, and
Wright
,
S. J.
,
2005
, “Stability and Optimality of Distributed Model Predictive Control,”
44th IEEE Conference on Decision and Control
, Seville, Spain, Dec. 12–15.10.1109/CDC.2005.1583235
17.
Başar
,
T.
, and
Olsder
,
G. J.
,
1999
,
Dynamic Noncooperative Game Theory, Classics in Applied Mathematics
,
SIAM
, Philadelphia, PA.
18.
Venkat
,
A. N.
,
Rawlings
,
J.
, and
Wright
,
S. J.
,
2007
, “
Distributed Model Predictive Control of Large-Scale Systems
,”
Assessment and Future Directions of Nonlinear Model Predictive Control
,
Springer
,
Berlin
.
19.
Stewart
,
B. T.
,
Venkat
,
A. N.
,
Rawlings
,
J.
,
Wright
,
S. J.
, and
Pannocchia
,
G.
,
2010
, “
Cooperative Distributed Model Predictive Control
,”
Syst. Control Lett.
,
59
(
8
), pp.
460
469
.10.1016/j.sysconle.2010.06.005
20.
Rawlings
,
J.
, and
Mayne
,
D.
,
2009
,
Model Predictive Control: Theory and Design
,
Nob Hill, Madison
,
WI
.
21.
Stewart
,
B. T.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
2011
, “
Cooperative Distributed Model Predictive Control for Nonlinear Systems
,”
J. Process Control
,
21
(
5
), pp.
698
704
.10.1016/j.jprocont.2010.11.004
22.
Maestre
,
J. M.
,
Muñoz De La Peña
,
D.
, and
Camacho
,
E. F.
,
2011
, “
Distributed Model Predictive Control Based on a Cooperative Game
,”
Opt. Control Appl. Methods
,
32
(
2
), pp.
153
176
.10.1002/oca.940
23.
Maestre
,
J. M.
,
Muñoz De La Peña
,
D.
,
Camacho
,
E. F.
, and
Alamo
,
T.
,
2011
, “
Distributed Model Predictive Control Based on Agent Negotiation
,”
J. Process Control
,
21
(
5
), pp.
685
697
.10.1016/j.jprocont.2010.12.006
24.
Ferramosca
,
A.
,
Limon
,
D.
,
Alvarado
,
I.
, and
Camacho
,
E. F.
,
2013
, “
Cooperative Distributed MPC for Tracking
,”
Automatica
,
49
(
4
), pp.
906
914
.10.1016/j.automatica.2013.01.019
25.
Cheng
,
R.
,
Fraser Forbes
,
J.
, and
Yip
,
W. S.
,
2008
, “
Dantzig–Wolfe Decomposition and Plant-Wide MPC Coordination
,”
Comput. Chem. Eng.
,
32
(
7
), pp.
1507
1522
.10.1016/j.compchemeng.2007.07.003
26.
Camponogara
,
E.
, and
De Oliveira
,
L. B.
,
2009
, “
Distributed Optimization for Model Predictive Control of Linear-Dynamic Networks
,”
IEEE Trans. Syst, Man, Cybern., Part A
,
39
(
6
), pp.
1331
1338
.10.1109/TSMCA.2009.2025507
27.
Ocampo-Martínez
,
C.
,
Bovo
,
S.
, and
Puig
,
V.
,
2011
, “
Partitioning Approach Oriented to the Decentralised Predictive Control of Large-Scale Systems
,”
J. Process Control
,
21
(
5
), pp.
775
786
.10.1016/j.jprocont.2010.12.005
28.
Alessio
,
A.
,
Barcelli
,
D.
, and
Bemporad
,
A.
,
2011
, “
Decentralized Model Predictive Control of Dynamically Coupled Linear Systems
,”
J. Process Control
,
21
(
5
), pp.
705
714
.10.1016/j.jprocont.2010.11.003
29.
Necoara
,
I.
,
Nedelcu
,
V.
, and
Dumitrache
,
I.
,
2011
, “
Parallel and Distributed Optimization Methods for Estimation and Control in Networks
,”
J. Process Control
,
21
(
5
), pp.
756
766
.10.1016/j.jprocont.2010.12.010
30.
Christofides
,
P. D.
,
Scattolini
,
R.
,
De La Peña
,
D. M.
, and
Liu
,
J.
,
2013
, “
Distributed Model Predictive Control: A Tutorial Review and Future Research Directions
,”
Comput. Chem. Eng.
,
51
, pp.
21
41
.10.1016/j.compchemeng.2012.05.011
31.
Ma
,
Y.
,
Anderson
,
G.
, and
Borrelli
,
F.
,
2011
, “A Distributed Predictive Control Approach to Building Regulation,” 2011
American Controls Conference
, San Francisco, CA, Jun. 29–Jul. 1.
32.
Morosan
,
P.-D.
,
Bourdais
,
R.
,
Dumur
,
D.
, and
Buisson
,
J.
,
2011
, “
A Distributed MPC Strategy Based on Benders' Decomposition Applied to Multi-Source Multi-Zone Temperature Regulation
,”
J. Process Control
,
21
(
5
), pp.
729
737
.10.1016/j.jprocont.2010.12.002
33.
Morosan
,
P.-D.
,
Bourdais
,
R.
,
Dumur
,
D.
, and
Buisson
,
J.
,
2010
, “
Building Temperature Regulation Using a Distributed Model Predictive Control
,”
Energy Build.
,
42
(
9
), pp.
1445
1452
.10.1016/j.enbuild.2010.03.014
34.
Bourdais
,
R.
, and
Guéguen
,
H.
,
2010
, “
Distributed Predictive Control for Complex Hybrid System. The Refrigeration System Example
,” 12th IFAC Symposium on Large Scale Systems, Rennes, France.
35.
Zhang
,
Y.
, and
Li
,
S.
,
2007
, “
Networked Model Predictive Control Based on Neighbourhood Optimization for Serially Connected Large-Scale Processes
,”
J. Process Control
,
17
(
1
), pp.
37
50
.10.1016/j.jprocont.2006.08.009
36.
Farina
,
M.
, and
Scattolini
,
R.
,
2012
, “
Distributed Predictive Control: A Non-Cooperative Algorithm With Neighbor-to-Neighbor Communication for Linear Systems
,”
Automatica
,
48
(
6
), pp.
1088
1096
.10.1016/j.automatica.2012.03.020
37.
Scheu
,
H.
, and
Marquardt
,
W.
,
2011
, “
Sensitivity-Based Coordination in Distributed Model Predictive Control
,”
J. Process Control
,
21
(
5
), pp.
715
728
.10.1016/j.jprocont.2011.01.013
38.
Elliott
,
M. S.
, and
Rasmussen
,
B. P.
,
2012
, “Neighbor-Communication Model Predictive Control and HVAC Systems,” American Control Conference, Montreal, Canada, June 27–29.
39.
Elliott
,
M. S.
,
Jones
,
E.
, and
Rasmussen
,
B. P.
, “
A Study of Evaporator Superheat Dynamics, Efficiency Degradation, and Control
,”
Int. J. Refrigeration
(in press).
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.