In this paper, we develop a new dynamic model for a robotic fish propelled by a flexible tail actuated at the base. The tail is modeled by multiple rigid segments connected in series through rotational springs and dampers, and the hydrodynamic force on each segment is evaluated using Lighthill's large-amplitude elongated-body theory. For comparison, we also construct a model using linear beam theory to capture the beam dynamics. To assess the accuracy of the models, we conducted experiments with a free-swimming robotic fish. The results show that the two models have almost identical predictions when the tail undergoes small deformation, but only the proposed multisegment model matches the experimental measurement closely for all tail motions, demonstrating its promise in the optimization and control of tail-actuated robotic fish.

References

1.
Lauder
,
G. V.
, and
Drucker
,
E. G.
,
2004
, “
Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces
,”
IEEE J. Oceanic Eng.
,
29
(
3
), pp.
556
571
.10.1109/JOE.2004.833219
2.
Fish
,
F. E.
, and
Lauder
,
G. V.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
193
224
.10.1146/annurev.fluid.38.050304.092201
3.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1995
, “
An Efficient Swimming Machine
,”
Sci. Am.
,
273
(
3
), pp.
64
70
.10.1038/scientificamerican0395-64
4.
Guo
,
S.
,
Fukuda
,
T.
, and
Asaka
,
K.
,
2003
, “
A New Type of Fish-Like Underwater Microrobot
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
136
141
.10.1109/TMECH.2003.809134
5.
Epstein
,
M.
,
Colgate
,
J. E.
, and
MacIver
,
M. A.
,
2006
, “
Generating Thrust With a Biologically-Inspired Robotic Ribbon Fin
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Oct 9–15, Beijing, China, pp.
2412
2417
.
6.
Hu
,
H.
,
Liu
,
J.
,
Dukes
,
I.
, and
Francis
,
G.
,
2006
, “
Design of 3D Swim Patterns for Autonomous Robotic Fish
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Oct 9–15, Beijing, China, pp.
2406
2411
.
7.
Kim
,
B.
,
Kim
,
D.
,
Jung
,
J.
, and
Park
,
J.
,
2005
, “
A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer–Metal Composite Actuators
,”
Smart Mater. Struct.
,
14
, pp.
1579
1585
.10.1088/0964-1726/14/6/051
8.
Tan
,
X.
,
Kim
,
D.
,
Usher
,
N.
,
Laboy
,
D.
,
Jackson
,
J.
,
Kapetanovic
,
A.
,
Rapai
,
J.
,
Sabadus
,
B.
, and
Zhou
,
X.
,
2006
, “
An Autonomous Robotic Fish for Mobile Sensing
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Oct 9–15, Beijing, China, pp.
5424
5429
.
9.
Morgansen
,
K. A.
,
Triplett
,
B. I.
, and
Klein
,
D. J.
,
2007
, “
Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1184
1199
.10.1109/LED.2007.911625
10.
Aureli
,
M.
,
Kopman
,
V.
, and
Porfiri
,
M.
,
2010
, “
Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites
,”
IEEE/ASME Trans. Mechatron.
,
15
(
4
), pp.
603
614
.10.1109/TMECH.2009.2030887
11.
Low
,
K. H.
,
2006
, “
Locomotion and Depth Control of Robotic Fish With Modular Undulating Fins
,”
Int. J. Autom. Comput.
,
4
, pp.
348
357
.10.1007/s11633-006-0348-6
12.
Wang
,
J.
,
Alequin-Ramos
,
F.
, and
Tan
,
X.
,
2011
, “
Dynamic Modeling of Robotic Fish and Its Experimental Validation
,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sep 25–30, San Francisco, CA pp.
588
594
.
13.
Wang
,
J.
, and
Tan
,
X.
,
2013
, “
A Dynamic Model for Tail-actuated Robotic Fish With Drag Coefficient Adaptation
,”
Mechatronics
,
23
(
6
), pp.
659
668
.10.1016/j.mechatronics.2013.07.005
14.
Yu
,
J.
,
Tan
,
M.
,
Wang
,
S.
, and
Chen
,
E.
,
2004
, “
Development of a Biomimetic Robotic Fish and its Control Algorithm
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
34
(
4
), pp.
1798
1810
.10.1109/TSMCB.2004.831151
15.
Zhang
,
Z. G.
,
Yamashita
,
N.
,
Gondo
,
M.
,
Yamamoto
,
A.
, and
Higuchi
,
T.
,
2008
, “
Electrostatically Actuated Robotic Fish: Design and Control for High-Mobility Open-Loop Swimming
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
118
129
.10.1109/TRO.2007.913989
16.
Kanso
,
E.
, and
Newton
,
P. K.
,
2009
, “
Passive Locomotion via Normal-Mode Coupling in a Submerged Spring-Mass System
,”
J. Fluid Mech.
,
641
, pp.
205
215
.10.1017/S0022112009992357
17.
Alvarado
,
P. V.
, and
Youcef Toumi
,
K.
,
2006
, “
Design of Machines With Compliant Bodies for Biomimetic Locomotion in Fluid Environments
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
3
13
.10.1115/1.2168476
18.
Wang
,
Y.
,
Tan
,
R.
,
Xing
,
G.
,
Wang
,
J.
, and
Tan
,
X.
,
2012
, “
Profiling Aquatic Diffusion Process Profiling Using Robotic Sensor Networks
,”
IEEE Trans. Mob. Comput.
,
13
(
4
), pp.
883
893
.10.1109/TMC.2013.18
19.
Wang
,
Y.
,
Tan
,
R.
,
Xing
,
G.
,
Tan
,
X.
,
Wang
,
J.
, and
Zhou
,
R.
,
2012
, “
Spatiotemporal Aquatic Field Reconstruction Using Robotic Sensor Swarm
,”
Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS)
, Dec 4–7, San Juan, Puerto Rico, pp.
205
214
.
20.
Tan
,
X.
,
2011
, “
Autonomous Robotic Fish as Mobile Sensor Platforms: Challenges and Potential Solutions
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
31
40
.10.4031/MTSJ.45.4.2
21.
Marras
,
S.
, and
Porfiri
,
M.
,
2012
, “
Fish and Robots Swimming Together: Attraction Towards the Robot Demands Biomimetic Locomotion
,”
J. R. Soc. Interface
,
9
(
73
), pp.
1856
1868
.10.1098/rsif.2012.0084
22.
Kato
,
N.
,
2000
, “
Control Performance in the Horizontal Plane of a Fish Robot with Mechanical Pectoral Fins
,”
IEEE J. Oceanic Eng.
,
25
(
1
), pp.
121
129
.10.1109/48.820744
23.
Anderson
,
J. M.
, and
Chhabra
,
N. K.
,
2002
, “
Maneuvering and Stability Performance of a Robotic Tuna
,”
Integr. Comp. Biol.
,
42
, pp.
118
126
.10.1093/icb/42.1.118
24.
Bandyopadhyay
,
P. R.
,
2002
, “
Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles
,”
Integr. Comp. Biol.
,
42
, pp.
102
117
.10.1093/icb/42.1.102
25.
Long
,
J. H.
,
Lammert
,
A. C.
,
Pell
,
C. A.
,
Kemp
,
M.
,
Strother
,
J. A.
,
Crenshaw
,
H. C.
, and
McHenry
,
M. J.
,
2004
, “
A Navigational Primitive: Biorobotic Implementation of Cycloptic Helical Klinotaxis in Planar Motion
,”
IEEE J. Oceanic Eng.
,
29
(
3
), pp.
795
806
.10.1109/JOE.2004.833233
26.
Liu
,
J.
, and
Hu
,
H.
,
2010
, “
Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish
,”
J. Bionic Eng.
,
7
(
1
), pp.
35
48
.10.1016/S1672-6529(09)60184-0
27.
Krieg
,
M.
, and
Mohseni
,
K.
, “
Dynamic Modeling and Control of Biologically Inspired Vortex Ring Thrusters for Underwater Robot Locomotion
,”
IEEE Trans. Rob.
, pp.
542
554
.10.1109/TRO.2010.2046069
28.
Kodati
,
P.
,
Hinkle
,
J.
,
Winn
,
A.
, and
Deng
,
X.
,
2008
, “
Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design, and Fabrication
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
105
117
.10.1109/TRO.2008.915446
29.
Low
,
K. H.
, and
Chong
,
C. W.
,
2010
, “
Parametric Study of the Swimming Performance of a Fish Robot Propelled by a Flexible Caudal Fin
,”
Bioinspiration Biomimetics
,
5
(
4
), p.
046002
.10.1088/1748-3182/5/4/046002
30.
Chen
,
Z.
,
Shatara
,
S.
, and
Tan
,
X.
,
2010
, “
Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer-Metal Composite Caudal Fin
,”
IEEE/ASME Trans. Mechatron.
,
15
(
3
), pp.
448
459
.10.1109/TMECH.2009.2027812
31.
Yu
,
J.
,
Ding
,
R.
,
Yang
,
Q.
,
Tan
,
M.
,
Wang
,
W.
, and
Zhang
,
J.
,
2011
, “
On a Bio-Inspired Amphibious Robot Capable of Multimodal Motion
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
1
10
.10.1109/TMECH.2011.2132732
32.
Liu
,
F.
,
Lee
,
K.-M.
, and
Yang
,
C.-J.
,
2012
, “
Hydrodynamics of an Undulating Fin for a Wave-Like Locomotion System Design
,”
IEEE/ASME Trans. Mechatron.
,
17
(
3
), pp.
554
562
.10.1109/TMECH.2011.2107747
33.
Zhou
,
C.
, and
Low
,
K. H.
,
2012
, “
Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
25
35
.10.1109/TMECH.2011.2175004
34.
Lee
,
S.
,
Park
,
J.
, and
Han
,
C.
,
2007
, “
Optimal Control of a Mackerel-Mimicking Robot for Energy Efficient Trajectory Tracking
,”
J. Bionic Eng.
,
4
(
4
), pp.
209
215
.10.1016/S1672-6529(07)60034-1
35.
Barrett
,
D. S.
,
Triantafyllou
,
M. S.
,
Yue
,
D. K. P.
,
Grosenbaugh
,
M. A.
, and
Wolfgang
,
M. J.
,
1999
, “
Drag-Reduction in Fish-Like Locomotion
,”
J. Fluid Mech.
,
392
, pp.
183
212
.10.1017/S0022112099005455
36.
Low
,
K. H.
,
Chong
,
C. W.
, and
Zhou
,
C.
,
2010
, “
Performance Study of a Fish Robot Propelled by a Flexible Caudal Fin
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation
, May 3–8, Anchorage, AK pp.
90
95
.
37.
Mason
,
R.
, and
Burdick
,
J. W.
,
2000
, “
Experiments in Carangiform Robotic Fish Locomotion
,”
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
, Apr 24–28, San Francisco, CA, pp.
428
435
.
38.
Long
,
J. H.
, Jr.
,
Koob
,
T. J.
,
Irving
,
K.
,
Combie
,
K.
,
Engel
,
V.
,
Livingston
,
H.
,
Lammert
,
A.
, and
Schumacher
,
J.
,
2006
, “
Biomimetic Evolutionary Analysis: Testing the Adaptive Value of Vertebrate Tail Stiffness in Autonomous Swimming Robots
,”
J. Exp. Biol.
,
209
(
23
), pp.
4732
4746
.10.1242/jeb.02559
39.
Tangorra
,
J. L.
,
Lauder
,
G. V.
,
Hunter
,
I. W.
,
Mittal
,
R.
,
Madden
,
P. G. A.
, and
Bozkurttas
,
M.
,
2010
, “
The Effect of Fin Ray Flexural Rigidity on the Propulsive Forces Generated by a Biorobotic Fish Pectoral Fin
,”
J. Exp. Biol.
,
213
, pp.
4043
4054
.10.1242/jeb.048017
40.
Park
,
Y.
,
Jeong
,
U.
,
Lee
,
J.
,
Kwon
,
S.
,
Kim
,
H.
, and
Cho
,
K.
,
2012
, “
Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1216
1227
.10.1109/TRO.2012.2205490
41.
Kane
,
T. R.
,
Ryan
,
R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control Dyn.
,
10
(
2
), pp.
139
151
.10.2514/3.20195
42.
Mitchell
,
T. P.
, and
Bruch
,
J. C.
,
1988
, “
Free Vibrations of a Flexible Arm Attached to a Compliant Finite Hub
,”
ASME J. Vib. Acoust.
,
1
(
1
), pp.
118
120
.10.1115/1.3269466
43.
Low
,
K. H.
,
1990
, “
Eigen-Analysis of a Tip-Loaded Beam Attached to a Rotating Joint
,”
ASME J. Vib. Acoust.
,
112
(
4
), pp.
497
500
.10.1115/1.2930134
44.
Kelly
,
S. D.
, and
Murray
,
R. M.
,
2000
, “
Modelling Efficient Pisciform Swimming for Control
,”
Int. J. Robust Nonlinear Control
,
10
, pp.
217
241
.10.1002/(SICI)1099-1239(20000415)10:4%3C217::AID-RNC469%3E3.0.CO;2-X
45.
Harper
,
K. A.
,
Berkemeier
,
M. D.
, and
Grace
,
S.
,
1998
, “
Modeling the Dynamics of Spring-Driven Oscillating-Foil Propulsion
,”
IEEE J. Oceanic Eng.
,
23
(
3
), pp.
285
296
.10.1109/48.701206
46.
Kopman
,
V.
, and
Porfiri
,
M.
,
2013
, “
Design, Modeling, and Characterization of a Miniature Robotic Fish for Research and Education in Biomimetics and Bioinspiration
,”
IEEE Trans. Mechatron.
,
18
(
2
), pp.
471
483
.10.1109/TMECH.2012.2222431
47.
Yang
,
H.
,
Hong
,
J.
, and
Yu
,
Z.
,
2003
, “
Dynamics Modelling of a Flexible Hub-Beam System With a Tip Mass
,”
J. Sound Vib.
,
266
(
4
), pp.
759
774
.10.1016/S0022-460X(02)01332-9
48.
Shi
,
P.
,
McPhee
,
J.
, and
Heppler
,
G. R.
,
2001
, “
A Deformation Field for Euler-Bernoulli Beams With Applications to Flexible Multibody Dynamics
,”
Multibody Sys. Dyn.
,
5
(
1
), pp.
79
104
.10.1023/A:1026433909962
49.
Banerjee
,
A. K.
, and
Nagarajan
,
S.
,
1997
, “
Efficient Simulation of Large Overall Motion of Beams Undergoing Large Deflection
,”
Multibody Sys. Dyn.
,
1
(
1
), pp.
113
126
.10.1023/A:1009720622253
50.
Wereley
,
N.
,
Wang
,
G.
, and
Chaudhuri
,
A.
,
2011
, “
Demonstration of Uniform Cantileverd Beam Beding Vibration Using a Pair of Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
22
(
4
), pp.
307
316
.10.1177/1045389X10379661
51.
Chen
,
X.
,
Zhu
,
G.
,
Yang
,
X.
,
Hung
,
D. L. S.
, and
Tan
,
X.
,
2013
, “
Model-Based Estimation of Flow Characteristics Using an Ionic Polymer-Metal Composite Beam
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
932
943
.10.1109/TMECH.2012.2194300
52.
Lighthill
,
M. J.
,
1971
, “
Large-Amplitude Elongated-Body Theory of Fish Locomotion
,”
Proc. R. Soc. London, Ser. B
,
179
, pp.
125
138
.10.1098/rspb.1971.0085
53.
Pedley
,
T. J.
, and
Hill
,
S. J.
,
1999
, “
Large-amplitude Undulatory Fish Swimming: Fluid Mechanics Coupled to Internal Mechanics
,”
J. Exp. Biol.
,
202
, pp.
3431
3438
.10.1109/TRO.2010.2046069
54.
Cheng
,
J.
,
Zhuang
,
L.
, and
Tong
,
B.
,
1991
, “
Analysis of Swimming Three-Dimensional Waving Plates
,”
J. Fluid Mech.
,
232
, pp.
341
355
.10.1017/S0022112091003713
55.
Wang
,
J.
,
McKinley
,
P. K.
, and
Tan
,
X.
,
2012
, “
Dynamic Modeling of Robotic Fish With a Flexible Caudal Fin
,”
Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference
, Oct 17–19, Fort Lauderdale, FL, Paper No. DSCC2012–MOVIC2012–8695.
56.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
,
New York
.
57.
Arafat
,
H. N.
,
Stilwell
,
D. J.
, and
Neu
,
W. L.
,
2006
, “
Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle
,”
Proceedings of Oceans
, Sep 18–22, Boston, MA pp.
1
6
.
58.
Clough
,
R. W.
, and
Penzien
,
J.
,
2003
,
Dynamics of Structures
, 3rd ed.,
Computers & Structures Inc
, 1995 University Ave,
Berkeley, CA
.
You do not currently have access to this content.