Modeling the transient response of compressible fluid systems using dynamic systems theory is relevant to various engineering fields, such as gas pipelines, compressors, or internal combustion engines. Many applications, for instance, real-time simulation tools, system optimization, estimation and control would greatly benefit from the availability of predictive models with high fidelity and low calibration requirements. This paper presents a novel approach for the solution of the nonlinear partial differential equations (PDEs) describing unsteady flows in compressible fluid systems. A systematic methodology is developed to operate model-order reduction of distributed-parameter systems described by hyperbolic PDEs. The result is a low-order dynamic system, in the form of ordinary differential equations (ODEs), which enables one to apply feedback control or observer design techniques. The paper combines an integral representation of the conservation laws with a projection based onto a set of eigenfunctions, which capture and solve the spatially dependent nature of the system separately from its time evolution. The resulting model, being directly derived from the conservation laws, leads to high prediction accuracy and virtually no calibration requirements. The methodology is demonstrated in this paper with reference to classic linear and nonlinear problems for compressible fluids, and validated against analytical solutions.

References

References
1.
Rasmussen
,
B.
, and
Alleyne
,
A.
,
2004
, “
Control-Oriented Modeling of Transcritical Vapor Compression Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
1
), pp.
54
64
.10.1115/1.1648312
2.
Gruhle
,
W. D.
, and
Isermann
,
R.
, 1985, “
Modeling and Control of a Refrigerant Evaporator
,”
ASME J. Dyn. Sys., Meas., Control
,
107
(4), pp.
235
240
.10.1115/1.3140728
3.
Palm
,
W.
,
2005
,
System Dynamics
,
McGraw-Hill Higher Education
, New York.
4.
Mohitpour
,
M.
,
Thompson
,
W.
, and
Asante
,
B.
,
1996
, “
Importance of Dynamic Simulation on the Design and Optimization of Pipeline Transmission Systems
,”
Proceedings of the International Pipeline Conference
, American Society of Mechanical Engineers, Calgary, Alberta, Canada, June 9–14, Vol.
2
, pp.
1183
1188
.
5.
Aalto
,
H.
,
2008
, “
Transfer Functions for Natural Gas Pipeline Systems
,”
Proceedings of the IFAC 17th World Congres
s
, Seoul, Korea, July 6–11.
6.
Abbaspour
,
M.
, and
Chapman
,
K.
,
2008
, “
Nonisothermal Transient Flow in Natural Gas Pipeline
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031018
.10.1115/1.2840046
7.
Zhang
,
G.
, and
Assanis
,
D.
,
2003
, “
Manifold Gas Dynamics Modeling and its Coupling With Single-Cylinder Engine Models Using Simulink
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
563
571
.10.1115/1.1560708
8.
Turin
,
R.
, and
Geering
,
H.
,
1994
, “
Model-Based Adaptive Fuel Control in an SI Engine
,” SAE Technical Paper No. 940374.
9.
Stefanopoulou
,
A.
,
Cook
,
J.
,
Grizzle
,
J.
, and
Freudenberg
,
J.
,
1998
, “
Control-Oriented Model of a Dual Equal Variable Cam Timing Spark Ignition Engine
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
2
), pp.
257
266
.10.1115/1.2802417
10.
Stefanopoulou
,
A.
,
Cook
,
J.
,
Freudenberg
,
J.
,
Grizzle
,
J.
,
Haghgooie
,
M.
, and
Szpak
,
P.
,
1995
, “
Modeling and Control of a Spark Ignition Engine With Variable Cam Timing
,”
Proceedings of the IEEE American Control Conference
, Seattle, WA, June 21–23, Vol.
4
, pp.
2576
2581
.
11.
Pfiffner
,
R.
,
Weber
,
F.
,
Amstutz
,
A.
, and
Guzzella
,
L.
,
1997
, “
Modeling and Model-Based Control of Supercharged SI-Engines for Cars With Minimal Fuel Consumption
,”
Proceedings of the American Control Conference
.
12.
Doebelin
,
E.
,
1998
,
System Dynamics: Modeling, Analysis, Simulation, Design
, Marcel Dekker, New York.
13.
Karnopp
,
D.
,
Margolis
,
R.
, and
Rosenberg
,
R.
,
1990
,
System Dynamics: A Unified Approach
,
Wiley-Interscience
, Hoboken, NJ.
14.
Karnopp
,
D.
,
1978
, “
Pseudo Bond Graphs for Thermal Energy Transport
,”
ASME J. Dyn. Syst., Meas., Control
,
100
(
3
), pp.
165
169
.10.1115/1.3426363
15.
Karnopp
,
D.
,
1979
, “
State Variables and Pseudo Bond Graphs for Thermofluid Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
101
(
3
), pp.
201
203
.10.1115/1.3426425
16.
Margolis
,
D.
,
1979
, “
Bond Graph Fluid Line Models for Inclusion With Dynamic Systems Simulation
,”
J. Franklin Inst.
,
308
, pp.
255
268
.10.1016/0016-0032(79)90116-9
17.
Margolis
,
D.
,
2002
, “
Bond Graphs for 1-Dimensional Duct Flows Using Nonlinear Finite Lumps
,”
Simulation Series
,
35
(2), pp.
65
71
.
18.
Tan
,
J.
,
Stelson
,
K.
, and
Janni
,
K.
,
1994
, “
Compressible-Flow Modeling With Pseudo Bond Graphs
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
2
), pp.
272
280
.10.1115/1.2899220
19.
Brown
,
F.
,
2002
, “
Non-Iterative Evaluation of Multiphase Thermal Compliances in Bond Graphs
,”
Proc. Inst. Mech. Eng., Part I
,
216
(
1
), pp.
13
19
.10.1243/0954405021519654
20.
Brown
,
F.
,
2006
,
Engineering System Dynamics: A Unified Graph-Centered Approach
, Vol.
8
,
CRC Press
, Boca Raton, FL.
21.
Stockar
,
S.
,
Canova
,
M.
,
Guezennec
,
Y.
,
Rizzoni
,
G.
, and
Follen
,
K.
,
2011
, “
A System Dynamics Modeling Methodology to Predict Transient Phenomena in Compressible Fluid Flow Systems
,”
Proceedings of the ASME Dynamic Systems and Control Conference
, Arlington, VA, Oct. 31–Nov. 2.
22.
Shapiro
,
A.
,
1977
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
, Hoboken, NJ.
23.
Horlock
,
J. H.
, and
Winterbone
,
D. E.
,
1986
, “
The Thermodynamics and Gas Dynamics of Internal Combustion Engines
,” Vol. 2, Clarendon Press, Oxford, UK.
24.
Winterbone
,
D.
, and
Pearson
,
R.
,
2005
,
Theory of Engine Manifold Design: Wave Action Methods for IC Engines
,
Wiley
, Hoboken, NJ.
25.
Montenegro
,
G.
,
Onorati
,
A.
,
Della Torre
,
A.
, and
Torregrosa
,
A.
,
2011
, “
The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices
,” SAE Int. J. Engines,
4
(
2
), pp.
2519
2530
,
SAE
Technical Paper 2011-24-0215. 10.4271/2011-24-0215
26.
Diamantaras
,
K.
, and
Kung
,
S.
,
1996
,
Principal Component Neural Networks: Theory and Applications
,
Wiley
,
New York
.
27.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
28.
Onorati
,
A.
,
Perotti
,
M.
, and
Rebay
,
S.
,
1997
, “
Modeling One-Dimensional Unsteady Flows in Ducts: Symmetric Finite Difference Schemes Versus Galerkin Discontinuous Finite Element Methods
,”
Int. J. Mech. Sci.
,
39
(
11
), pp.
1213
1236
.10.1016/S0020-7403(97)00014-3
29.
Schiesser
,
W.
,
1991
,
The Numerical Method of Lines: Integration of Partial Differential Equations
, Vol.
29
,
Academic Press
,
San Diego, CA
.
30.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Development
,
11
(
2
), pp.
215
234
.10.1147/rd.112.0215
31.
Sod
,
G.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.10.1016/0021-9991(78)90023-2
32.
Toro
,
E.
,
2009
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
,
Springer
, Berlin, Germany.
33.
Strand
,
K.
, and
Engja
,
H.
,
1991
, “
Bond Graph Interpretation of One-Dimensional Fluid Flow
,”
J. Franklin Inst.
,
328
, pp.
781
793
.10.1016/0016-0032(91)90054-7
34.
Onorati
,
A.
, and
Ferrari
,
G.
,
1998
, “
Modeling of 1-D Unsteady Flows in IC Engine Pipe Systems: Numerical Methods and Transport of Chemical Species
,” SAE Technical Paper No. 980782.
35.
Pearson
,
R.
, and
Winterbone
,
D.
,
1993
, “
Calculating the Effects of Variations in Composition on Wave Propagation in Gases
,”
Int. J. Mech. Sci.
,
35
(
6
), pp.
517
537
.10.1016/0020-7403(93)90039-W
You do not currently have access to this content.