Hysteresis poses a significant challenge for control of smart material actuators. If unaccommodated, the hysteresis can result in oscillation, poor tracking performance, and potential instability when the actuators are incorporated in control design. To overcome these problems, a fundamental idea in coping with hysteresis is inverse compensation based on the Preisach model. In this paper, we address systematically the problem of Preisach model inversion and its properties, employing the technique of three-step composition mapping and geometric interpretation of the Preisach model. A Preisach right inverse is achieved via the iterative algorithm proposed, which possesses same properties with the Preisach model. Finally, comparative experiments are performed on a piezoelectric stack actuator (PEA) to test the efficacy of the compensation scheme based on the Preisach right inverse.

References

References
1.
Ping
,
G.
, and
Jouaneh
,
M.
,
1996
, “
Tracking Control of a Piezoceramic Actuator
,”
IEEE Trans. Control Syst. Technol.
,
4
(
3
), pp.
209
216
.10.1109/87.491195
2.
Hughes
,
D.
, and
Wen
,
J. T.
,
1997
, “
Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis
,”
Smart Mater. Struct.
,
6
, pp.
287
300
.10.1088/0964-1726/6/3/007
3.
Venkataraman
,
R.
,
1999
, “
Modeling and Adaptive Control of Magnetostrictive Actuators
,” Ph.D. thesis, College Park, MD, http://drum.lib.umd.edu/handle/1903/6043
4.
Shunli
,
X.
, and
Yangmin
,
L.
,
2013
, “
Optimal Design, Fabrication, and Control of an XY Micropositioning Stage Driven by Electromagnetic Actuators
,”
IEEE Trans. Ind. Electron.
,
60
(
10
), pp.
4613
4626
.10.1109/TIE.2012.2209613
5.
Cardelli
,
E.
,
Torre
,
E. D.
, and
Tellini
,
B.
,
2000
, “
Direct and Inverse Preisach Modeling of Soft Materials
,”
IEEE Trans. Magn.
,
36
(
4
), pp.
1267
1271
.10.1109/20.877671
6.
Visintin
,
A.
,
1994
,
Differential Models of Hysteresis
,
Springer
,
Berlin, Germany
, pp.
119
121
.
7.
Brokate
,
M.
, and
Sprekels
,
J.
,
1996
,
Hysteresis and Phase Transitions
,
Springer
,
Berlin, Germany
, pp.
105
107
.
8.
Mayergoyz
,
I. D.
,
1991
,
Mathematical Models of Hysteresis
,
Springer-Verlag
,
New York
, pp.
212
217
.
9.
Sebastian
,
A.
, and
Salapaka
,
S.
,
2003
, “
H∞ Loop Shaping Design for Nano-positioning
,”
American Control Conference
, Denver, CO, June 4–6, Vol.
5
, pp.
3708
13
.
10.
Song
,
J. K.
, and
Washington
,
G.
,
1999
, “
Thunder Actuator Modeling and Control With Classical and Fuzzy Control Algorithm
,”
Proc. SPIE
,
3668
, pp.
866
877
.10.1117/12.350763
11.
Andoh
,
F.
,
Washington
,
G.
, and
Utkin
,
V.
,
2001
, “
Shape Control of Distributed Parameter Reflectors Using Sliding Mode Control
,”
Proc. SPIE
,
4334
, pp.
164
175
.10.1117/12.436596
12.
Tao
,
G.
, and
Kokotovic
,
P. V.
,
2003
,
Adaptive Control Design and Analysis
,
Wiley
,
New York
, Chap. 10.
13.
Hong
,
H.
, and
Mrad
,
R. B.
,
2004
, “
A Discrete-Time Compensation Algorithm for Hysteresis in Piezoceramic Actuators
,”
Mech. Syst. Signal Process.
,
18
(1), pp.
169
185
.10.1016/S0888-3270(03)00021-9
14.
Davino
,
D.
,
Giustiniani
,
A.
, and
Visone
,
C.
,
2008
, “
Fast Inverse Preisach Models in Algorithms for Static and Quasistatic Magnetic-Field Computations
,”
IEEE Trans. Magn.
,
44
(
6
), pp.
862
865
.10.1109/TMAG.2007.916484
15.
Dlala
,
E.
,
Saitz
,
J.
, and
Arkkio
,
A.
,
2006
, “
Inverted and Forward Preisach Models for Numerical Analysis of Electromagnetic Field Problems
,”
IEEE Trans. Magn.
,
42
(
8
), pp.
1963
1973
.10.1109/TMAG.2006.877463
16.
Tan
,
X.
, and
Baras
,
J. S.
,
2004
, “
Modeling and Control of Hysteresis in Magneto-Stricture Actuators
,”
Automatics
,
40
(
9
), pp.
1469
1480
.10.1016/j.automatica.2004.04.006
17.
Iyer
,
R. V.
,
Tan
,
X.
, and
Krishnaprasad
,
P. S.
,
2005
, “
Approximate Inversion of the Preisach Hysteresis Operator With Application to Control of Smart Actuators
,”
IEEE Trans. Autom. Control
,
50
(
6
), pp.
798
810
.10.1109/TAC.2005.849205
18.
Mittal
,
S.
, and
Menq
,
C., H.
,
2000
, “
Hysteresis Compensation in Electromagnetic Actuators Through Preisach Model Inversion
,”
IEEE/ASME Trans. Mechatronics
,
5
(
4
), pp.
394
409
.10.1109/3516.891051
19.
Aubin
,
J. P.
, and
Frankowska
,
H.
,
1990
,
Set-Valued Analysis
,
Birkhäuser
,
Boston, MA
, pp.
30
38
.
You do not currently have access to this content.