Robot frame compliance has a large negative effect on the global accuracy of the system when large external forces/torques are exerted. This phenomenon is particularly problematic in applications where the robot is required to achieve ultrahigh (micron level) accuracy under very large external loads, e.g., in biomechanical testing and high precision machining. To ensure the positioning accuracy of the robot in these applications, the authors proposed a novel Stewart platform-based manipulator with decoupled sensor–actuator locations. The unique mechanism has the sensor locations fully decoupled from the actuator locations for the purpose of passively compensating for the load frame compliance, as a result improving the effective stiffness of the manipulator in six degrees of freedom (6DOF). In this paper, the stiffness of the proposed manipulator is quantified via a simplified method, which combines both an analytical model (robot kinematics error model) and a numerical model [finite element analysis (FEA) model] in the analysis. This method can be used to design systems with specific stiffness requirements. In the control aspect, the noncollocated positions of the sensors and actuators lead to a suboptimal control structure, which is addressed in the paper using a simple Jacobian-based decoupling method under both kinematics- and dynamics-based control. Simulation results demonstrate that the proposed manipulator configuration has an effective stiffness that is increased by a factor of greater than 15 compared to a general design. Experimental results show that the Jacobian-based decoupling method effectively increases the dynamic tracking performance of the manipulator by 25% on average over a conventional method.

References

References
1.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Liversay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.10.1115/1.2895477
2.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(12), pp.
1577
1585
.10.1016/S0021-9290(96)80009-1
3.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
,
1998
, “
Use of Robotic Technology for Diathrodial Joint Research
,”
J. Sci. Med. Sport
,
2
(4), pp.
283
297
.10.1016/S1440-2440(99)80002-4
4.
Frey
,
M.
,
Burgkart
,
R.
,
Regenfelder
,
F.
, and
Riener
,
R.
,
2004
, “
Optimised Robot-Based System for the Exploration of Elastic Joint Properties
,”
Med. Biol. Eng. Comput.
,
42
(5), pp.
674
678
.10.1007/BF02347550
5.
Costi
,
J. J.
,
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
2008
, “
Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading
,”
Spine
,
33
(
16
), pp.
1731
1738
.10.1097/BRS.0b013e31817bb116
6.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(1), pp.
15
40
.10.1016/S0094-114X(99)00006-3
7.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
Dordrecht, Netherlands
.
8.
Walker
,
M. R.
, and
Dickey
,
J. P.
,
2007
, “
New Methodology for Multi-Dimensional Spinal Joint Testing With a Parallel Robot
,”
Med. Biol. Eng. Comput.
,
45
, pp.
297
304
.10.1007/s11517-006-0158-6
9.
Howard
,
R. A.
,
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Corr
,
D. T.
,
Shrive
,
N. G.
,
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Beveridge
,
J. E.
,
Marchuk
,
L. L.
, and
Frank
,
C. B.
,
2007
, “
Reproduction of in Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
743
749
.10.1115/1.2768983
10.
Ding
,
B.
,
Stanley
,
R. M.
,
Cazzolato
,
B. S.
, and
Costi
,
J. J.
,
2011
, “
Real-Time FPGA Control of a Hexapod Robot for 6-DOF Biomechanical Testing
,”
Proceedings of the 37th Conference of the IEEE Industrial Electronics Society
,
Melbourne, VIC, Australia
, Nov. 7–10, pp.
211
216
.10.1109/IECON.2011.6119320
11.
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Churchill
,
D.
, and
Laible
,
J. P.
,
2002
, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
,
35
, pp.
517
521
.10.1016/S0021-9290(01)00221-4
12.
Klimchik
,
A.
,
Pashkevich
,
A.
,
Chablat
,
D.
, and
Hovland
,
G.
,
2013
, “
Compliance Error Compensation Technique for Parallel Robots Composed of Non-Perfect Serial Chains
,”
J. Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
385
393
.10.1016/j.rcim.2012.09.008
13.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE
Trans. Rob. Autom.,
6
(
3
), pp.
337
382
.10.1109/70.56657
14.
Pashkevich
,
A.
,
Kilmchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.10.1016/j.mechmachtheory.2010.12.008
15.
EI-Khasawneh
,
B. S.
, and
Ferreira
,
P. M.
,
1999
, “
Computation of Stiffness and Stiffenss Bounds for Parallel Link Manipulators
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
321
342
.10.1016/S0890-6955(98)00039-X
16.
Masory
,
O.
,
Wang
,
J.
, and
Zhuang
,
H.
,
1993
, “
On the Accuracy of a Stewart Platform—Part II: Kinematic Calibration and Compensation
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
,
Atlanta, GA
, May 2–6, pp.
725
731
.10.1109/ROBOT.1993.292064
17.
Li
,
Y.
,
Wang
,
J.
, and
Wang
,
L.
,
2002
, “
Stiffness Analysis of a Stewart Platform-Based Parallel Kinematic Machine
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
,
Washington, DC
, May 11–15, pp.
3672
3677
.10.1109/ROBOT.2002.1014280
18.
Li
,
C.
,
Sun
,
L.
,
Qu
,
D.
, and
Liu
,
Y.
,
2007
, “
Error Analysis and Compensation of Precision Parallel Robot for Sensor Locating in ICF
,” Proceedings of the 2nd
IEEE
Conference on Industrial Electronics and Applications
,
Harbin, China
, May 23–25, pp.
1297
1301
.10.1109/ICIEA.2007.4318615
19.
Lawless
,
I. M.
,
Ding
,
B.
,
Cazzolato
,
B. S.
, and
Costi
,
J. J.
, 2014, “Adaptive Velocity-Based Six Degree of Freedom Load Control for Real-Time Unconstrained Biomechanical Testing,”
J. Biomech
(in press).10.1016/j.jbiomech.2014.06.023
20.
Do
,
W. Q. D.
, and
Shahinpoor
,
M.
,
1998
, “
Inverse Dynamics Analysis and Simulation of a Platform Type of Robot
,”
J. Rob. Syst.
,
5
(
3
), pp.
209
227
.10.1002/rob.4620050304
21.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
A Newton–Euler Formulation for the Inverse Dynamics of Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
22.
Ghobakhloo
,
A.
,
Eghtesad
,
M.
, and
Azadi
,
M.
,
2006
, “
Position Control of a Stewart–Gough Platform Using Inverse Dynamics Method With Full Dynamics
,”
Proceedings of the International Workshop on Advanced Motion Control
,
Istanbul, Turkey
, March 27–29, pp. 50–55.
23.
Coulombe
,
J.
, and
Bonev
,
I. A.
,
2013
, “
A New Rotary Hexapod for Micropositioning
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
,
Karlsruhe, Germany
, May 6–10, pp.
877
880
.10.1109/ICRA.2013.6630676
You do not currently have access to this content.