In this paper, we present an analysis of the optimal burn rate in an internal combustion engine (ICE) considering pressure gradient, maximum pressure, and knocking. A zero-dimensional model with heat losses is used for that purpose. The working fluids are assumed to behave like ideal gases with temperature dependent gas properties. In the first part, it is assumed that the burn rate can be arbitrarily chosen at every time instance in order to maximize the mechanical work. This leads to an optimal control problem with constraints. In the second part, a Vibe type burn rate is assumed, where the center of combustion, the duration and the form factor can be chosen in order to maximize the mechanical work. This Vibe type burn rate is finally compared with the arbitrary combustion as the benchmark in order to evaluate the potential of the more realistic burn shape.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill, International
, New York.
2.
Pischinger
,
R.
,
Kell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik Thermodynamik der Verbrennungskraftmaschine
, 3rd ed.,
Springer
,
Bonn
.
3.
Mozurkewich
,
M.
, and
Berry
,
R. S.
,
1982
, “
Optimal Paths for Thermodynamic Systems: The Ideal Otto Cycle
,”
J. Appl. Phys.
,
53
(
1
), pp.
34
42
.10.1063/1.329894
4.
Hoffmann
,
K. H.
,
Watowich
,
S. J.
, and
Berry
,
R. S.
,
1985
, “
Optimal Paths for Thermodynamic Systems: The Ideal Diesel Cycle
,”
J. Appl. Phys.
,
58
(
6
), pp.
2125
2134
.10.1063/1.335977
5.
Caton
,
J. A.
,
2000
, “
A Review of Investigations Using the Second Law of Thermodynamics to Study Internal-Combustion Engines
,” SAE Paper No. 2000-01-1081.
6.
Rakopoulos
,
C.
, and
Giakoumis
,
E.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.10.1016/j.pecs.2005.10.001
7.
Teh
,
K.-Y.
, and
Edwards
,
C. F.
,
2008
, “
An Optimal Control Approach to Minimizing Entropy Generation in an Adiabatic Internal Combustion Engine
,”
J. Dyn. Syst., Meas., Control
,
130
(
4
), p. 041008.10.1115/1.2936864
8.
Ge
,
Y.
,
Chen
,
L.
, and
Sun
,
F.
,
2012
, “
Optimal Path of Piston Motion of Irreversible Otto Cycle for Minimum Entropy Generation With Radiative Heat Transfer Law
,”
J. Energy Inst.
,
85
(
3
), pp.
140
149
.10.1179/1743967112Z.00000000025
9.
Caton
,
J. A.
,
2000
, “
The Effect of Burn Rate Parameters on the Operating Attributes of a Spark-Ignition Engine as Determined From the Second Law of Thermodynamics
,”
Spring Technical Conference of the ASME ICE Divisio
n
.
10.
Ge
,
Y.
,
Chen
,
L.
, and
Sun
,
F.
,
2008
, “
Finite-Time Thermodynamic Modeling and Analysis of an Irreversible Otto-Cycle
,”
Appl. Energy
,
85
(
7
), pp.
618
624
.10.1016/j.apenergy.2007.09.008
11.
Ge
,
Y. L.
,
Chen
,
L. G.
,
Sun
,
F. R.
, and
Wu
,
C.
,
2007
, “
Performance of Diesel Cycle With Heat Transfer, Friction, and Variable Specific Heats of Working Fluid
,”
J. Energy Inst.
,
80
(
4
), pp.
239
242
.10.1179/174602207X241941
12.
Ozsoysal
,
O. A.
,
2009
, “
Effects of Combustion Efficiency on a Dual Cycle
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2400
2406
.10.1016/j.enconman.2009.05.029
13.
Gahruei
,
M. H.
,
Jeshvaghani
,
H. S.
,
Vahidi
,
S.
, and
Chen
,
L.
,
2013
, “
Mathematical Modeling and Comparison of Air Standard Dual and Dual-Atkinson Cycles With Friction, Heat Transfer and Variable Specific-Heats of the Working Fluid
,”
Appl. Math. Modell.
,
37
(
12–13
), pp.
7319
7329
.10.1016/j.apm.2013.02.025
14.
Ebrahimi
,
R.
, and
Hoseinpour
,
M.
,
2013
, “
Performance Analysis of Irreversible Miller Cycle Under Variable Compression Ratio
,”
J. Thermophys. Heat Transfer
,
27
(
3
), pp.
542
548
.10.2514/1.T3981
15.
Hou
,
S.-S.
,
2007
, “
Comparison of Performances of Air Standard Atkinson and Otto Cycles With Heat Transfer Considerations
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1683
1690
.10.1016/j.enconman.2006.11.001
16.
Descieux
,
D.
, and
Feidt
,
M.
,
2007
, “
One Zone Thermodynamic Model Simulation of an Ignition Compression Engine
,”
Appl. Therm. Eng.
,
27
(
8
), pp.
1457
1466
.10.1016/j.applthermaleng.2006.10.002
17.
Zhao
,
Y.
, and
Chen
,
J.
,
2007
, “
Optimum Performance Analysis of an Irreversible Diesel Heat Engine Affected by Variable Heat Capacities of Working Fluid
,”
Energy Convers. Manage.
,
48
(
9
), pp.
2595
2603
.10.1016/j.enconman.2007.03.014
18.
Abu-Nada
,
E.
,
Al-Hinti
,
I.
,
Akash
,
B.
, and
Al-Sarkhi
,
A.
,
2007
, “
Thermodynamic Analysis of Spark-Ignition Engine Using a Gas Mixture Model for the Working Fluid
,”
Int. J. Energy Res.
,
31
(
11
), pp.
1031
1046
.10.1002/er.1296
19.
Sakhrieh
,
A.
,
Abu-Nada
,
E.
,
Al-Hinti
,
I.
,
Al-Ghandoor
,
A.
, and
Akash
,
B.
,
2010
, “
Computational Thermodynamic Analysis of Compression Ignition Engine
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
299
303
.10.1016/j.icheatmasstransfer.2009.11.002
20.
Menacer
,
B.
, and
Bouchetara
,
M.
,
2013
, “
Numerical Simulation and Prediction of the Performance of a Direct Injection Turbocharged Diesel Engine
,”
Simulation
,
89
(
11
), pp.
1355
1368
.10.1177/0037549713499249
21.
Merker
,
G. P.
,
Schwarz
,
C.
,
Stiesch
,
G.
, and
Otto
,
F.
,
2006
,
Simulating Combustion
,
Springer-Verlag
,
Berlin, Heidelberg
.
22.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes, Springer-Verlag Berlin
,
Heidelberg.
23.
Scappin
,
F.
,
Stefansson
,
S. H.
,
Haglind
,
F.
,
Andreasen
,
A.
, and
Larsen
,
U.
,
2012
, “
Validation of a Zero-Dimensional Model for Prediction of NOx and Engine Performance for Electronically Controlled Marine Two-Stroke Diesel Engines
,”
Appl. Therm. Eng.
,
37
, pp.
344
352
.10.1016/j.applthermaleng.2011.11.047
24.
Payri
,
F.
,
Olmeda
,
P.
,
Martin
,
J.
, and
Garcia
,
A.
,
2011
, “
A Complete 0D Thermodynamic Predictive Model for Direct Injection Diesel Engines
,”
Appl. Energy
,
88
(
12
), pp.
4632
4641
.10.1016/j.apenergy.2011.06.005
25.
Asay
,
R. J.
,
Svensson
,
K. I.
, and
Tree
,
D. R.
,
2004
, “
An Empirical, Mixing-Limited, Zero-Dimensional Model for Diesel Combustion
,” SAE Paper 2004-01-0924.
26.
Franzke
,
D. E.
,
1981
, “
Beitrag zur Ermittlung eines Klopfkriteriums der ottomotorischen Verbrennung und zur Vorausberechnung der Klopfgrenze
,” Ph.D. thesis, TU München.
27.
Sundström
,
O.
, and
Guzzella
,
L.
,
2009
, “
A Generic Dynamic Programming Matlab Function
,”
Control Applications, (CCA) Intelligent Control, (ISIC), 2009 IEEE,
St. Petersburg, Russia, July 8–10, pp.
1625
1630
.10.1109/CCA.2009.5281131
28.
Bertsekas
,
D. P.
,
1995
,
Nonlinear Programming
,
Athena Scientific
,
Belmont, MA
.
29.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
1995
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
New York
.
30.
2004
, “Thermodynamic Tables: Hydrocarbons and Non-Hydrocarbons,” http://www.trc.nist.gov/tables/trctables.htm
You do not currently have access to this content.