This paper focuses on a special class of stochastic nonlinear time-delay system with more weak conditions in which the drift and diffusion vectors depend on all the states, including the unmeasurable states for the first time. By introducing a high-gain observer, finding the maximum value interval of high-gain for the desired performance and choosing an appropriate Lyapunov-Krasoviskii function, an output-feedback controller is designed to ensure the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability and the output can be almost regulated to the origin surely. A practice example of mechanical movement system is provided to demonstrate the efficiency of the output-feedback controller.

References

1.
Li
,
Z.
,
Wang
,
J.
, and
Shao
,
H.
,
2002
, “
Delay-Dependent Dissipative Control for Linear Time-Delay Systems
,”
J. Franklin Inst.
,
339
, pp.
529
542
.10.1016/S0016-0032(02)00030-3
2.
Wang
,
J.
,
Luo
,
Y.
, and
Wu
,
H.
,
2011
, “
Stochastic Stability and Stabilization of Uncertain Jump Linear Delay Systems via Delay Decomposition
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
2
), p.
021011
.10.1115/1.4003245
3.
Yi
,
S.
,
Ulsoy
,
A. G.
, and
Nelson
,
P. W.
,
2010
, “
Design of Observer-Based Feedback Control for Time-Delay Systems With Application to Automotive Powertrain Control
,”
J. Franklin Inst.
,
347
, pp.
358
376
.10.1016/j.jfranklin.2009.09.001
4.
Guo
,
L.
,
Zuo
,
X.
,
Liu
,
J.
, and
Liang
,
H.
,
2014
, “
Output-Feedback Control of a Class of Stochastic Nonlinear Systems With Power Growth Conditions
,”
Int. J. Control, Autom., Syst.
,
12
(
2
), pp.
274
282
.10.1007/s12555-012-0539-6
5.
Yue
,
H.
, and
Li
,
J.
,
2013
, “
Output-Feedback Adaptive Fuzzy Control for a Class of Nonlinear Systems With Input Delay and Unknown Control Directions
,”
J. Franklin Inst.
,
350
, pp.
129
154
.10.1016/j.jfranklin.2012.10.010
6.
Richard
,
J. P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
7.
Chen
,
W.
,
Jiao
,
L.
,
Li
,
J.
, and
Li
,
R.
,
2010
, “
Adaptive NN Backstepping Output-Feedback Control for Stochastic Nonlinear Strict-Feedback Systems With Time-Varying Delays
,”
IEEE Trans. Syst., Man Cybern., Part B: Cybernetics
,
40
(
3
), pp.
939
950
.10.1109/TSMCB.2009.2033808
8.
Fu
,
Y.
,
Tian
,
Z.
, and
Shi
,
S.
,
2005
, “
Output-Feedback Stabilization for a Class of Stochastic Time-Delay Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
50
(
6
), pp.
847
850
.10.1109/TAC.2005.849237
9.
Liu
,
S.
,
Ge
,
S.
, and
Zhang
,
J.
,
2008
, “
Adaptive Output-Feedback Control for a Class of Uncertain Stochastic Nonlinear Systems With Time Delays
,”
Int. J. Control
,
81
(
8
), pp.
1210
1220
.10.1080/00207170701598478
10.
Xie
,
S.
, and
Xie
,
L.
,
2000
, “
Stabilization of a Class of Uncertain Large Scale Stochastic Systems With Time Delays
,”
Automatica
,
36
(
1
), pp.
161
167
.10.1016/S0005-1098(99)00147-8
11.
Yue
,
D.
, and
Han
,
Q.
,
2005
, “
Delay-Dependent Exponential Stability of Stochastic Systems With Time-Varying Delay, Nonlinearity, and Markovian Switching
,”
IEEE Trans. Autom. Control
,
50
(
2
), pp.
217
222
.10.1109/TAC.2004.841935
12.
Zhang
,
L.
,
Boukas
,
E. K.
, and
Lam
,
J.
,
2008
, “
Analysis and Synthesis of Markov Jump Linear Systems With Time-Varying Delays and Partially Known Transition Probabilities
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2458
2464
.10.1109/TAC.2008.2007867
13.
Xu
,
S.
, and
Chen
,
T.
,
2002
, “
Robust H∞ Control for Uncertain Stochastic Systems With State Delay
,”
IEEE Trans. Autom. Control
,
47
(
12
), pp.
2089
2094
.10.1109/TAC.2002.805670
14.
Xie
,
X.
, and
Tian
,
J.
,
2007
, “
State-Feedback Stabilization for High-Order Stochastic Nonlinear Systems With Stochastic Inverse Dynamics
,”
Int. J. Robust Nonlinear Control
,
17
(
14
), pp.
1343
1362
.10.1002/rnc.1177
15.
Liu
,
S.
, and
Zhang
,
J.
,
2008
, “
Output-Feedback Control of a Class of Stochastic Nonlinear Systems With Linearly Bounded Unmeasurable States
,”
Int. J. Robust Nonlinear Control
,
18
(
6
), pp.
665
687
.10.1002/rnc.1255
16.
Liu
,
L.
, and
Duan
,
N.
,
2010
, “
State-Feedback Stabilization for Stochastic High Order Nonlinear Systems With a Ratio of Odd Integers Power
,”
Nonlinear Anal.: Model. Control
,
15
(
1
), pp.
39
53
.
17.
Liu
,
L.
, and
Xie
,
X.
,
2012
, “
State-Feedback Stabilization for Stochastic High Order Nonlinear Systems With SISS Inverse Dynamics
,”
Asian J. Control
,
14
(
1
), pp.
207
216
.10.1002/asjc.288
18.
Tian
,
J.
, and
Xie
,
X.
,
2007
, “
Adaptive State-Feedback Stabilization for High Order Stochastic Nonlinear Systems With Uncertain Control Coefficients
,”
Int. J. Control
,
80
(
9
), pp.
1503
1516
.10.1080/00207170701418917
19.
Xie
,
X.
, and
Tian
,
J.
,
2009
, “
Adaptive State-Feedback Stabilization of High Order Stochastic Systems With Nonlinear Parameterization
,”
Automatica
,
45
(
1
), pp.
126
133
.10.1016/j.automatica.2008.10.006
20.
Xie
,
X.
,
Duan
,
N.
, and
Yu
,
X.
,
2011
, “
State-Feedback Control of High Order Stochastic Nonlinear Systems With SiISS Inverse Dynamics
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1921
1926
.10.1109/TAC.2011.2135150
21.
Li
,
H.
, and
Shi
,
Y.
,
2012
, “
Robust H∞ Filtering for Nonlinear Stochastic Systems With Uncertainties and Markov Delays
,”
Automatica
,
48
(
1
), pp.
159
166
.10.1016/j.automatica.2011.09.045
22.
Li
,
H.
, and
Shi
,
Y.
,
2012
, “
State-Feedback H∞ Control for Stochastic Time-Delay Nonlinear Systems With State and Disturbance-Dependent Noise
,”
Int. J. Control
,
85
(
10
), pp.
1515
1531
.10.1080/00207179.2012.691181
23.
Duan
,
N.
, and
Xie
,
X.
,
2011
, “
Further Results on Output-Feedback Stabilization for a Class of Stochastic Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
56
(
5
), pp.
1208
1213
.10.1109/TAC.2011.2107112
24.
Xie
,
X.
, and
Liu
,
L.
,
2012
, “
Further Results on Output Feedback Stabilization for Stochastic High Order Nonlinear Systems With Time-Varying Delay
,”
Automatica
,
48
(
10
), pp.
2577
2586
.10.1016/j.automatica.2012.06.061
25.
Liu
,
L.
, and
Xie
,
X.
,
2011
, “
Output-Feedback Stabilization for Stochastic High Order Nonlinear Systems With Time-Varying Delay
,”
Automatica
,
47
(
12
), pp.
2772
2779
.10.1016/j.automatica.2011.09.014
26.
Kolmanovskii
,
V.
, and
Myshkis
,
A.
,
1999
,
Introduction to the Theory and Applications of Functional Differential Equations
,
Kluwer Academic Publisher
,
Dordrecht, Netherlands
, Chap. 10.
You do not currently have access to this content.