This paper focuses on a special class of stochastic nonlinear time-delay system with more weak conditions in which the drift and diffusion vectors depend on all the states, including the unmeasurable states for the first time. By introducing a high-gain observer, finding the maximum value interval of high-gain for the desired performance and choosing an appropriate Lyapunov-Krasoviskii function, an output-feedback controller is designed to ensure the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability and the output can be almost regulated to the origin surely. A practice example of mechanical movement system is provided to demonstrate the efficiency of the output-feedback controller.
Issue Section:
Research Papers
References
1.
Li
, Z.
, Wang
, J.
, and Shao
, H.
, 2002
, “Delay-Dependent Dissipative Control for Linear Time-Delay Systems
,” J. Franklin Inst.
, 339
, pp. 529
–542
.10.1016/S0016-0032(02)00030-32.
Wang
, J.
, Luo
, Y.
, and Wu
, H.
, 2011
, “Stochastic Stability and Stabilization of Uncertain Jump Linear Delay Systems via Delay Decomposition
,” ASME J. Dyn. Syst., Meas., Control
, 133
(2
), p. 021011
.10.1115/1.40032453.
Yi
, S.
, Ulsoy
, A. G.
, and Nelson
, P. W.
, 2010
, “Design of Observer-Based Feedback Control for Time-Delay Systems With Application to Automotive Powertrain Control
,” J. Franklin Inst.
, 347
, pp. 358
–376
.10.1016/j.jfranklin.2009.09.0014.
Guo
, L.
, Zuo
, X.
, Liu
, J.
, and Liang
, H.
, 2014
, “Output-Feedback Control of a Class of Stochastic Nonlinear Systems With Power Growth Conditions
,” Int. J. Control, Autom., Syst.
, 12
(2
), pp. 274
–282
.10.1007/s12555-012-0539-65.
Yue
, H.
, and Li
, J.
, 2013
, “Output-Feedback Adaptive Fuzzy Control for a Class of Nonlinear Systems With Input Delay and Unknown Control Directions
,” J. Franklin Inst.
, 350
, pp. 129
–154
.10.1016/j.jfranklin.2012.10.0106.
Richard
, J. P.
, 2003
, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,” Automatica
, 39
(10
), pp. 1667
–1694
.10.1016/S0005-1098(03)00167-57.
Chen
, W.
, Jiao
, L.
, Li
, J.
, and Li
, R.
, 2010
, “Adaptive NN Backstepping Output-Feedback Control for Stochastic Nonlinear Strict-Feedback Systems With Time-Varying Delays
,” IEEE Trans. Syst., Man Cybern., Part B: Cybernetics
, 40
(3
), pp. 939
–950
.10.1109/TSMCB.2009.20338088.
Fu
, Y.
, Tian
, Z.
, and Shi
, S.
, 2005
, “Output-Feedback Stabilization for a Class of Stochastic Time-Delay Nonlinear Systems
,” IEEE Trans. Autom. Control
, 50
(6
), pp. 847
–850
.10.1109/TAC.2005.8492379.
Liu
, S.
, Ge
, S.
, and Zhang
, J.
, 2008
, “Adaptive Output-Feedback Control for a Class of Uncertain Stochastic Nonlinear Systems With Time Delays
,” Int. J. Control
, 81
(8
), pp. 1210
–1220
.10.1080/0020717070159847810.
Xie
, S.
, and Xie
, L.
, 2000
, “Stabilization of a Class of Uncertain Large Scale Stochastic Systems With Time Delays
,” Automatica
, 36
(1
), pp. 161
–167
.10.1016/S0005-1098(99)00147-811.
Yue
, D.
, and Han
, Q.
, 2005
, “Delay-Dependent Exponential Stability of Stochastic Systems With Time-Varying Delay, Nonlinearity, and Markovian Switching
,” IEEE Trans. Autom. Control
, 50
(2
), pp. 217
–222
.10.1109/TAC.2004.84193512.
Zhang
, L.
, Boukas
, E. K.
, and Lam
, J.
, 2008
, “Analysis and Synthesis of Markov Jump Linear Systems With Time-Varying Delays and Partially Known Transition Probabilities
,” IEEE Trans. Autom. Control
, 53
(10
), pp. 2458
–2464
.10.1109/TAC.2008.200786713.
Xu
, S.
, and Chen
, T.
, 2002
, “Robust H∞ Control for Uncertain Stochastic Systems With State Delay
,” IEEE Trans. Autom. Control
, 47
(12
), pp. 2089
–2094
.10.1109/TAC.2002.80567014.
Xie
, X.
, and Tian
, J.
, 2007
, “State-Feedback Stabilization for High-Order Stochastic Nonlinear Systems With Stochastic Inverse Dynamics
,” Int. J. Robust Nonlinear Control
, 17
(14
), pp. 1343
–1362
.10.1002/rnc.117715.
Liu
, S.
, and Zhang
, J.
, 2008
, “Output-Feedback Control of a Class of Stochastic Nonlinear Systems With Linearly Bounded Unmeasurable States
,” Int. J. Robust Nonlinear Control
, 18
(6
), pp. 665
–687
.10.1002/rnc.125516.
Liu
, L.
, and Duan
, N.
, 2010
, “State-Feedback Stabilization for Stochastic High Order Nonlinear Systems With a Ratio of Odd Integers Power
,” Nonlinear Anal.: Model. Control
, 15
(1
), pp. 39
–53
.17.
Liu
, L.
, and Xie
, X.
, 2012
, “State-Feedback Stabilization for Stochastic High Order Nonlinear Systems With SISS Inverse Dynamics
,” Asian J. Control
, 14
(1
), pp. 207
–216
.10.1002/asjc.28818.
Tian
, J.
, and Xie
, X.
, 2007
, “Adaptive State-Feedback Stabilization for High Order Stochastic Nonlinear Systems With Uncertain Control Coefficients
,” Int. J. Control
, 80
(9
), pp. 1503
–1516
.10.1080/0020717070141891719.
Xie
, X.
, and Tian
, J.
, 2009
, “Adaptive State-Feedback Stabilization of High Order Stochastic Systems With Nonlinear Parameterization
,” Automatica
, 45
(1
), pp. 126
–133
.10.1016/j.automatica.2008.10.00620.
Xie
, X.
, Duan
, N.
, and Yu
, X.
, 2011
, “State-Feedback Control of High Order Stochastic Nonlinear Systems With SiISS Inverse Dynamics
,” IEEE Trans. Autom. Control
, 56
(8
), pp. 1921
–1926
.10.1109/TAC.2011.213515021.
Li
, H.
, and Shi
, Y.
, 2012
, “Robust H∞ Filtering for Nonlinear Stochastic Systems With Uncertainties and Markov Delays
,” Automatica
, 48
(1
), pp. 159
–166
.10.1016/j.automatica.2011.09.04522.
Li
, H.
, and Shi
, Y.
, 2012
, “State-Feedback H∞ Control for Stochastic Time-Delay Nonlinear Systems With State and Disturbance-Dependent Noise
,” Int. J. Control
, 85
(10
), pp. 1515
–1531
.10.1080/00207179.2012.69118123.
Duan
, N.
, and Xie
, X.
, 2011
, “Further Results on Output-Feedback Stabilization for a Class of Stochastic Nonlinear Systems
,” IEEE Trans. Autom. Control
, 56
(5
), pp. 1208
–1213
.10.1109/TAC.2011.210711224.
Xie
, X.
, and Liu
, L.
, 2012
, “Further Results on Output Feedback Stabilization for Stochastic High Order Nonlinear Systems With Time-Varying Delay
,” Automatica
, 48
(10
), pp. 2577
–2586
.10.1016/j.automatica.2012.06.06125.
Liu
, L.
, and Xie
, X.
, 2011
, “Output-Feedback Stabilization for Stochastic High Order Nonlinear Systems With Time-Varying Delay
,” Automatica
, 47
(12
), pp. 2772
–2779
.10.1016/j.automatica.2011.09.01426.
Kolmanovskii
, V.
, and Myshkis
, A.
, 1999
, Introduction to the Theory and Applications of Functional Differential Equations
, Kluwer Academic Publisher
, Dordrecht, Netherlands
, Chap. 10.Copyright © 2014 by ASME
You do not currently have access to this content.