This paper presents a neural network adaptive controller for trajectory tracking of nonholonomic mobile robots. By defining a point to follow (look-ahead control), the path-following problem is solved with input-output linearization. A computed torque plus derivative (PD) controller and a dynamic inversion neural network controller are responsible for reducing tracking error and adapting to unmodeled external perturbations. The adaptive controller is implemented through a hidden layer feed-forward neural network, with weights updated in real time. The stability of the whole system is analyzed using Lyapunov theory, and control errors are proven to be bounded. Simulation results demonstrate the good performance of the proposed controller for trajectory tracking under external perturbations.

References

References
1.
Kanayama
,
Y.
,
Kimura
,
Y.
,
Miyazaki
,
F.
, and
Noguchi
,
T.
,
1990
, “
A Stable Tracking Control Method for an Autonomous Mobile Robot
,”
IEEE International Conference Robotics and Automation
, pp.
384
389
.
2.
Kim
,
M. S.
,
Shin
,
J.-H.
,
Hong
,
S.-G.
, and
Lee
,
J.-J.
,
2003
, “
Designing a Robust Adaptive Dynamic Controller for Nonholonomic Mobile Robots Under Modeling Uncertainty and Disturbances
,”
Mechatronics
,
13
, pp.
507
519
.10.1016/S0957-4158(02)00002-8
3.
Chen
,
C.-Y.
,
Li
,
T.-H.
, and
Yeh
,
Y.-C.
,
2009
, “
EP-Based Kinematic Control and Adaptive Fuzzy Sliding-Mode Dynamic Control for Wheeled Mobile Robots
,”
Inf. Sci.
,
179
, pp.
180
195
.10.1016/j.ins.2008.09.012
4.
Das
,
T.
, and
Kar
,
I. N.
,
2006
, “
Design and Implementation of an Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp. 501–510.10.1109/TCST.2006.872536
5.
de Sousa
,
C.
,
Hemerly
,
E. M.
, and
Galvão
,
R. K. H.
,
2002
, “
Adaptive Control for Mobile Robot Using Wavelet Networks
,”
IEEE Trans. Syst., Man Cybern.–Part B: Cybern.
,
32
(
4
), pp. 403–504.10.1109/TSMCB.2002.1018768
6.
Fierro
,
R.
, and
Lewis
,
F. L.
,
1997
, “
Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics
,”
J. Rob. Syst.
,
14
(
3
), pp.
149
163
.10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R
7.
Tsai
,
C.-C.
,
Cheng
,
M.-B.
, and
Lin
,
S.-C.
,
2007
, “
Robust Tracking Control for a Wheeled Mobile Manipulator With Dual Arms Using Hybrid Sliding-Mode Neural Network
,”
Asian J. Control
,
9
(
4
), pp.
377
389
.10.1111/j.1934-6093.2007.tb00392.x
8.
Wu
,
J.
,
Xu
,
G.-H.
, and
Yin
,
Z.-P.
,
2009
, “
Robust Adaptive Control for a Nonholonomic Mobile Robot With Unknown Parameters
,”
J Control Theory Appl.
,
7
(
2
) pp.
212
218
.10.1007/s11768-009-7130-6
9.
Yun
,
X.-P.
, and
Yamamoto
,
Y.
,
1993
, “
Internal Dynamics of a Wheeled Mobile Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama
, Japan, pp.
1288
1294
.
10.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
Springer-Verlag
,
London
.
11.
Kim
,
N.
,
2003
, “
Improved Methods in Neural Network-Based Adaptive Output Feedback Control, With Applications to Flight Control
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.