Basically, there are two main techniques to control the vehicle yaw moment. First method is the indirect yaw moment control, which works on the basis of active steering control (ASC). The second one being the direct yaw moment control (DYC), which is based on either the differential braking or the torque vectoring. An innovative idea for the direct yaw moment control is introduced by using an active controller system to supervise the lateral dynamics of vehicle and perform as an active yaw moment control system, denoted as the stabilizer pendulum system (SPS). This idea has further been developed, analyzed, and implemented in a standalone direct yaw moment control system, as well as, in an integrated vehicle dynamic control system with a differential braking yaw moment controller. The effectiveness of SPS has been evaluated by model simulation, which illustrates its superior performance especially on low friction roads.

References

1.
Van Zanten
,
R. E.
,
Landesfeind
,
K.
, and
Pfaff
,
G.
,
1998
, “
VDC System Development and Perspective
,”
SAE
Paper No. 980235.10.4271/980235
2.
Cong
,
G.
,
Mostefai
,
L.
,
Denai
,
M.
, and
Hori
,
Y.
,
2009
, “
Direct Yaw Moment Control of an In-Wheel-Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1411
1419
.10.1109/TIE.2009.2013737
3.
Boada
,
B. L.
,
Boada
,
M. J. L.
, and
Diaz
,
V.
,
2005
, “
Fuzzy-Logic Applied to Yaw Moment Control for Vehicle Stability
,”
Veh. Syst. Dyn.
,
43
(
10
), pp.
753
770
.10.1080/00423110500128984
4.
Tagawa
,
Y.
,
Ogata
,
H.
,
Morita
,
K.
,
Nagai
,
M.
, and
Morri
,
H.
,
1996
, “
Robust Active Steering System Taking Account of Nonlinear Dynamics
,”
Veh. Syst. Dyn.
,
25
(
S1
), pp.
668
681
.10.1080/00423119608969228
5.
Ackermann
,
J.
,
Odenthal
,
D.
, and
Bünte
,
T.
,
1999
, “
Advantages of Active Steering for Vehicle Dynamics Control
,”
32nd International Symposium on Automotive Technology and Automation
, Vienna, Austria, June 14–18, pp. 263–270.
6.
Zeyada
,
Y.
, and
Karnopp
,
D.
,
1998
, “
A Combined Active Steering Differential Braking Yaw Rate Control Strategy for Emergency Manoeuvres
,”
SAE
Paper No. 980230.10.4271/980230
7.
Piyabongkarn
,
D.
,
Lew
,
J.
,
Rajamani
,
R.
,
Grogg
,
J. A.
, and
Qinghui
,
Y.
,
2007
, “
On the Use of Torque-Biasing Systems for Electronic Stability Control
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
403
595
.10.1109/TCST.2007.894656
8.
Goodarzi
,
A.
, and
Esmailzadeh
,
E.
,
2007
, “
Design of a VDC System for All-Wheel Independent Drive Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
12
(
6
), pp.
632
639
.10.1109/TMECH.2007.910075
9.
Canale
,
M.
,
Fagiano
,
L.
,
Milanese
,
M.
, and
Borodani
,
P.
,
2007
, “
Robust Vehicle Yaw Control Using an Active Differential and IMC Techniques
,”
Control Eng. Pract.
,
15
(8), pp.
923
941
.10.1016/j.conengprac.2006.11.012
10.
Khatun
,
P.
,
Bingham
,
C. M.
,
Schofield
,
N.
, and
Mellor
,
P. H.
,
2003
, “
Application of Fuzzy Control Algorithms for Electric Vehicle Antilock Braking/Traction Control Systems
,”
IEEE Trans. Veh. Technol.
,
52
(
5
), pp.
1356
1364
.10.1109/TVT.2003.815922
11.
Yi
,
K.
,
Chung
,
T.
,
Kim
,
J.
, and
Yi
,
S.
,
2003
, “
An Investigation Into Differential Braking Strategies for Vehicle Stability Control
,”
J. Automot. Eng.
,
217
(
12
), pp.
1081
1093
.10.1243/09544070360729428
12.
Goodarzi
,
A.
, and
Diba
,
F.
,
2008
, “
Vehicle Dynamic Enhancement Using Controlled Moving Mass
,”
International Symposium on Advanced Vehicle Control
, AVEC08, Kobe, Japan, Oct. 6–9
13.
Goodarzi
,
A.
, and
Diba
,
F.
,
2009
, “
Stabilizer Pendulum System (SPS) an Innovative System for Direct Yaw Moment Control
,”
21st International Symposium on Dynamics of Vehicles on Road and Tracks
, IAVSD09, Stockholm, Sweden, Aug. 17–21.
14.
Karnopp
,
D.
,
2013
,
Vehicle Dynamics Stability and Control
,
CRC Press
, Boca Raton, FL.
15.
Pacejka
,
H. B.
,
2005
,
Tire and Vehicle Dynamics
,
Society of Automotive Engineers Inc.
,
Warrendale, PA
.
16.
Smith
,
D. E.
, and
Starkey
,
J. M.
,
1995
, “
Effects of Model Complexity on the Performance of Automated Vehicle Steering Controllers: Model Development, Validation, and Comparison
,”
Veh. Syst. Dyn.
,
24
(
2
), pp.
163
181
.10.1080/00423119508969086
17.
Esmailzadeh
,
E.
,
Vossoughi
,
G. R.
, and
Goodarzi
,
A.
,
2001
, “
Dynamic Modeling and Analysis of a Four Motorized Wheels Electric Vehicle
,”
Veh. Syst. Dyn.
,
35
(
3
), pp.
163
194
.10.1076/vesd.35.3.163.2047
18.
Esmailzadeh
,
E.
,
Goodarzi
,
A.
, and
Vossoughi
,
G. R.
,
2003
, “
Optimal Yaw Moment Control Law for Improved Vehicle Handling
,”
Mechatronics
,
13
(
7
), pp.
659
675
.10.1016/S0957-4158(02)00036-3
19.
Baffet
,
G.
,
Stephant
,
J.
, and
Gharara
,
A.
,
2006
, “
Vehicle Sideslip Angle and Lateral Tire-Force Estimation in Standard and Critical Driving Situations: Simulations and Experiments
,”
International Symposium on the Advanced Vehicle Control
, AVEC06, Taipei, Taiwan.
20.
Wei
,
J.
,
Zhuoping
,
Y.
, and
Lijun
,
Z.
,
2006
, “
Integrated Chassis Control System for Improving Vehicle Stability
,”
IEEE International Conference on Vehicular Electronics and Safety
, ICVES 2006, Beijing, Dec. 13–15.
21.
Ghoneim
,
Y. A.
,
Lin
,
W. C.
,
Sidlosky
,
D. M.
,
Chen
,
H. H.
,
Chin
,
Y.
, and
Tedrake
,
M. J.
,
2000
, “
Integrated Chassis Control System to Enhance Vehicle Stability
,”
Int. J. Veh. Des.
,
23
(
1/2
), pp.
124
144
.10.1504/IJVD.2000.001887
22.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory an Introduction
,
Prentice-Hall Inc.
,
New York
.
23.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
, 4th ed.,
John Wiley & Sons Inc.
, New York.
24.
Goodarzi
,
A.
,
Esmailzadeh
,
E.
, and
Sabooteh
,
A.
,
2008
, “
Automatic Path Control Based on Integrated Steering and External Yaw Moment Control
,” Proceedings of the
Institution of Mechanical Engineers
, Part K: Journal of Multi-body Dynamics,
222
(
2
), pp.
189
200
.10.1243/14644193JMBD120
25.
Taghirad
,
H. D.
, and
Esmailzadeh
,
E.
,
1998
, “
Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension
,”
J. Vib. Control
,
4
(
5
), pp.
603
618
.10.1177/107754639800400504
26.
Esmailzadeh
,
E.
, and
Fahimi
,
F.
,
1997
, “
Optimal Adaptive Active Suspensions for a Full Car Model
,”
Veh. Syst. Dyn.
,
27
(
2
), pp.
89
107
.10.1080/00423119708969324
You do not currently have access to this content.