Off-line robot dynamic identification methods are based on the use of the inverse dynamic identification model (IDIM), which calculates the joint forces/torques that are linear in relation to the dynamic parameters, and on the use of linear least squares technique to calculate the parameters (IDIM-LS technique). The joint forces/torques are calculated as the product of the known control signal (the input reference of the motor current loop) by the joint drive gains. Then it is essential to get accurate values of joint drive gains to get accurate estimation of the motor torques and accurate identification of dynamic parameters. The previous works proposed to identify the gain of one joint at a time using data of each joint separately. This is a sequential procedure which accumulates errors from step to step. To overcome this drawback, this paper proposes a global identification of the drive gains of all joints and the dynamic parameters of all links. They are calculated altogether in a single step using all the data of all joints at the same time. The method is based on the total least squares solution of an overdetermined linear system obtained with the inverse dynamic model calculated with available input reference of the motor current loop and joint position sampled data while the robot is tracking some reference trajectories without load on the robot and some trajectories with a known payload fixed on the robot. The method is experimentally validated on an industrial Stäubli TX-40 robot.

References

References
1.
Canudas de Wit
,
C.
, and
Aubin
,
A.
,
1990
, “
Parameters Identification of Robots Manipulators Via Sequential Hybrid Estimation Algorithms
,”
Proceeding of IFAC Congress
,
Tallinn, Russia
, pp.
178
183
.
2.
Gautier
,
M.
, and
Poignet
,
P.
,
2001
, “
Extended Kalman Filtering and Weighted Least Squares Dynamic Identification of Robot
,”
Control Eng. Pract.
,
9
, pp.
1361
1372
.10.1016/S0967-0661(01)00105-8
3.
Antonelli
,
G.
,
Caccavale
,
F.
, and
Chiacchio
,
P.
,
1999
, “
A Systematic Procedure for the Identification of Dynamic Parameters of Robot Manipulators
,”
Robotica
,
17
(
4
), pp.
427
435
.10.1017/S026357479900140X
4.
Kozlowski
,
K.
,
1998
,
Modeling and Identification in Robotics
,
Springer
,
London
.
5.
Hollerbach
,
J.
,
Khalil
,
W.
, and
Gautier
,
M.
,
2008
, “
Model Identification
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
London
, Chap. 14.
6.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Hermes Penton
,
London
.
7.
Khosla
,
P. K.
, and
Kanade
,
T.
,
1985
, “
Parameter Identification of Robot Dynamics
,”
Proceeding of 24th IEEE CDC
,
Fort-Lauderdale
, FL, pp.
1754
1760
.
8.
Lu
,
Z.
,
Shimoga
,
K. B.
, and
Goldenberg
,
A.
,
1993
, “
Experimental Determination of Dynamic Parameters of Robotic Arms
,”
J. Rob. Syst.
,
10
(
8
), pp.
1009
1029
.10.1002/rob.4620100803
9.
Restrepo
,
P. P.
, and
Gautier
,
M.
,
1995
, “
Calibration of Drive Chain of Robot Joints
,”
Proceedings of the 4th IEEE Conference on Control Applications
,
Albany, NY
, pp.
526
531
.
10.
Corke
,
P.
,
1996
, “
In Situ Measurement of Robot Motor Electrical Constants
,”
Robotica
,
23
(
14
), pp.
433
436
.10.1017/S0263574700019834
11.
Gautier
,
M.
, and
Briot
,
S.
,
2011
, “
New Method for Global Identification of the Joint Drive Gains of Robots Using a Known Inertial Payload
,”
Proceeding of IEEE ECC CDC
,
Orlando, FL
, Dec. 12–15
.
12.
Gautier
,
M.
, and
Briot
,
S.
,
2011
, “
New Method for Global Identification of the Joint Drive Gains of Robots Using a Known Payload Mass
,”
Proceeding of IEEE IROS
,
San Francisco, CA
, Sept. 25–30, pp.
3728
3733
.
13.
Gautier
,
M.
, and
Briot
,
S.
,
2012
, “
Global Identification of Drive Gains Parameters of Robots Using a Known Payload
,”
Proceeding of IEEE ICRA
,
Saint Paul, MI
, May 14–18, pp.
2812
2817
.
14.
Hamon
,
P.
,
Gautier
,
M.
, and
Garrec
,
P.
,
2011
, “
New Dry Friction Model With Load- and Velocity-Dependence and Dynamic Identification of Multi-DOF Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Shanghai
, China, pp.
1077
1084
.
15.
Mayeda
,
H.
,
Yoshida
,
K.
, and
Osuka
,
K.
,
1990
, “
Base Parameters of Manipulator Dynamic Models
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
312
321
.10.1109/70.56663
16.
Gautier
,
M.
, and
Khalil
,
W.
,
1990
, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
368
373
.10.1109/70.56655
17.
Gautier
,
M.
,
1991
, “
Numerical Calculation of the Base Inertial Parameters
,”
J. Rob. Syst.
,
8
(
4
), pp.
485
506
.10.1002/rob.4620080405
18.
Khalil
,
W.
,
Gautier
,
M.
, and
Lemoine
,
P.
,
2007
, “
Identification of the Payload Inertial Parameters of Industrial Manipulators
,”
Proceeding of IEEE ICRA
,
Roma, Italy
, Apr. 10–14, pp.
4943
4948
.
19.
Gautier
,
M.
,
1997
, “
Dynamic Identification of Robots With Power Model
,”
Proceeding of IEEE ICRA
,
Albuquerque, NM
, Apr. 20–25, pp.
1922
1927
.
20.
Kavanagh
,
R. C.
,
2001
, “
Performance Analysis and Compensation of M/T-Type Digital Tachometers
,”
IEEE Trans. Instrum. Meas.
,
50
(
4
), pp.
965
970
.10.1109/19.948308
21.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D.
,
DeSchutter
,
J.
, and
Van Brussel
,
H.
,
1997
, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
,
13
, pp.
730
740
.10.1109/70.631234
22.
Presse
,
C.
, and
Gautier
,
M.
,
1993
, “
New Criteria of Exciting Trajectories for Robot Identification
,”
Proceeding of IEEE ICRA
,
Atlanta, GA
, May 2–6, pp.
907
912
.
23.
Rao
,
C. R.
, and
Toutenburg
,
H.
,
1999
,
Linear Models: Least Squares and Alternatives
,
Second Edition
(Springer Series in Statistics),
Springer
,
New York
.
24.
Van Huffel
,
S.
, and
Vandewalle
,
J.
,
1991
, “
The Total Least Squares Problem: Computational Aspects and Analysis
,”
(Frontiers in Applied Mathematics Series)
,
SIAM
,
Philadelphia, PA
, Vol.
9
.
25.
Markovsky
,
I.
, and
Van Huffel
,
S.
,
2007
, “
Overview of Total Least-Squares Methods
,”
Signal Process.
,
87
, pp.
2283
2302
.10.1016/j.sigpro.2007.04.004
26.
Markovsky
,
I.
,
Sima
,
D. M.
, and
Van Huffel
,
S.
,
2010
, “
Total Least Squares Methods
,”
WIREs Comput. Stat.
,
2
(2), pp.
212
217
.10.1002/wics.65
27.
Van Huffel
,
S.
,
1991
, “
The Generalized Total Least Squares Problem: Formulation, Algorithm and Properties
,”
Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, NATO ASI Ser.
,
70
, pp.
651
660
.10.1007/978-3-642-75536-1
28.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1983
,
Matrix Computation
,
2nd ed.
,
Johns Hopkins University
,
Baltimore, MD
.
29.
Gautier
,
M.
,
Vandanjon
,
P.
, and
Presse
,
C.
,
1994
, “
Identification of Inertial and Drive Gain Parameters of Robots
,”
Proceeding of IEEE CDC
,
Lake Buena Vista, FL
, Dec. 14–16, pp.
3764
3769
.
30.
Khalil
,
W.
, and
Creusot
,
D.
,
1997
, “
Symoro+: A System for the Symbolic Modeling of Robots
,”
Robotica
,
15
, pp.
153
161
.10.1017/S0263574797000180
31.
Chablat
,
D.
, and
Wenger
,
P.
,
2003
, “
Architecture Optimization of a 3-DOF Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
403
410
.10.1109/TRA.2003.810242
32.
Van der Wijk
,
V.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Herder
,
J.
,
2011
, “
Generic Method for Deriving the General Shaking Force Balance Conditions of Parallel Manipulators With Application to a Redundant Planar 4-RRR Parallel Manipulator
,”
Proceedings of the 13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
, June 19–25.
You do not currently have access to this content.