In this paper, we extend the phase-plane based closed-loop scheme of implementing commands shaped with vibration-reduction filters. A generalized shaping filter is considered in this work which can have negative impulse intensities and different acceleration and deceleration limits. Switching conditions are derived in terms of the filter parameters for both convolution-based and closed-form based shaping techniques. Analytical expressions are provided for the switching curves and various schemes are discussed for selecting appropriate phase-planes and implementing shaped-commands on real-time servomechanisms.

References

References
1.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2002
,
Feedback Control of Dynamic Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Singer
,
N. C.
,
1989
, “
Residual Vibration Reduction in Computer Controlled Machine
,” Ph.D. thesis, Technical Report MIT Artificial Intelligence Laboratory, Cambridge, MA.
3.
Meckl
,
P. H.
, and
Seering
,
W. P.
,
1988
, “
Reducing Residual Vibration in System With Uncertain Resonances
,”
IEEE Control Syst. Mag.
,
8
(
2
), pp.
73
76
.10.1109/37.1877
4.
Bhat
,
S. P.
, and
Miu
,
D. K.
,
1990
, “
Precise Point-to-Point Positioning Control of Flexible Structures
,”
J. Dyn. Sys., Meas., Control
,
112
(
4
), pp.
667
674
.10.1115/1.2896193
5.
Singh
,
T.
, and
Vadali
,
S. R.
,
1994
, “
Robust Time-Optimal Control: Frequency Domain Approach
,”
J. Guid., Control Dyn.
,
17
(
2
), pp.
346
353
.10.2514/3.21204
6.
Wie
,
B.
,
Sinha
,
R.
, and
Liu
,
Q.
,
1993
, “
Robust Time-Optimal Control of Uncertain Structural Dynamic Systems
,”
J. Guidance, Control Dyn.
,
15
(
5
), pp.
980
983
.10.2514/3.21114
7.
Scrivener
,
S.
, and
Thompson
,
R.
,
1994
, “
Survey of Time-Optimal Attitude Maneuvers
,”
J. Guid., Control Dyn.
,
17
(
2
), pp.
225
233
.10.2514/3.21187
8.
Singhose
,
W. E.
,
Seering
,
W. P.
, and
Singer
,
N. C.
,
1997
, “
Time-Optimal Negative Input Shapers
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
198
205
.10.1115/1.2801233
9.
Tuttle
,
T. D.
, and
Seering
,
W. P.
,
1999
, “
Creating Time-Optimal Commands With Practical Constraints
,”
J. Dyn. Syst., Meas., Control
,
22
, pp.
241
250
.
10.
Lim
,
S. H.
,
Stevens
,
D.
, and
How
,
J. P.
,
1999
, “
Input Shaping Design for Multi-Input Flexible Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
443
447
.10.1115/1.2802494
11.
Dhanda
,
A.
, and
Franklin
,
G.
,
2010
, “
Optimal Control Formulations of Vibration Reduction Problems
,”
IEEE Trans. Autom. Control
,
55
(
2
), pp.
378
394
.10.1109/TAC.2009.2034940
12.
Smith
,
O. J. M.
,
1957
, “
Posicast Control of Damped Oscillatory Systems
,”
Proceedings of IRE
, Vol.
45
, pp.
1249
1255
.
13.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
76
82
.10.1115/1.2894142
14.
Balachandran
,
B.
,
Li
,
Y. Y.
, and
Fang
,
C.
,
1999
, “
A Mechanical Filter Concept for Passive and Active Control of Nonlinear Oscillations
,”
J. Sound Vib.
,
228
(
3
), pp.
651
682
.10.1006/jsvi.1999.2440
15.
Li
,
Y. Y.
, and
Balachandran
,
B.
,
2001
, “
Analytical Study of System With Mechanical Filter
,”
J. Sound Vib
,,
247
(
4
), pp.
633
653
.10.1006/jsvi.2001.3769
16.
Wagg
,
D.
, and
Neild
,
S. A.
,
2009
,
Nonlinear Vibration With Control: For Flexible and Adaptive Structures
,
Springer
,
New York
.
17.
O'Connor
,
W. J.
,
de la Flor
,
F. R.
,
McKeown
,
D. J.
, and
Feliu
,
V.
,
2008
, “
Wave-Based Control of Non-Linear Flexible Mechanical Systems
,”
Nonlinear Dyn.
,
57
(
2
), pp.
113
123
.10.1007/s11071-008-9425-4
18.
Pao
,
L. Y.
,
1994
, “
Characteristics of the Time-Optimal Control of Flexible Structures With Damping
,”
Proceedings IEEE Conference on Control Applications
, pp.
1299
304
.
19.
Barbieri
,
E.
, and
Ozguner
,
U.
,
1993
, “
A New Minimum-Time Control Law for a One-Mode Model of a Flexible Slewing Structure
,”
IEEE Trans. Autom. Control
,
38
(
1
), pp.
142
146
.10.1109/9.186327
20.
Li
,
F.
, and
Bainum
,
P. M.
,
1994
, “
Analytical Time-Optimal Control Synthesis of Fourth-Order System and Maneuvers of Flexible Structures
,”
J. Guid., Control, Dyn.
,
17
(
6
), pp.
1171
1178
.10.2514/3.21329
21.
Workman
,
M. L.
,
1987
, “
Adaptive Proximate Time-Optimal Servomechanisms
,” Ph.D. thesis, Stanford University, Stanford, CA.
22.
Dhanda
,
A.
, and
Franklin
,
G.
,
2009
, “
An Improved 2-DOF Proximate Time Optimal Servomechanism
,”
IEEE Trans. Magn.
,
45
(
5
), pp.
2151
2164
.10.1109/TMAG.2009.2013247
23.
Singhose
,
W. E.
,
Seering
,
W. P.
, and
Singer
,
N. C.
,
1996
, “
Input Shaping for Vibration Reduction With Specified Insensitivity to Modelling Error
,”
Proceedings of the Japan/USA Symposium on Flexible Automation
, pp.
307
313
.
24.
Singer
,
N. C.
,
Pao
,
L. Y.
,
Singhose
,
W. E.
, and
Seering
,
W. P.
,
1996
, “
An Efficient Algorithm for the Generation of Multiple-Mode Input Shaping Sequence
,”
Proceedings of the IEEE International Conference on Control Applications
, pp.
373
378
.
25.
Singhose
,
W.
,
Biediger
,
E. O.
,
Chen
,
Y.
, and
Mills
,
B.
,
2004
, “
Reference Command Shaping Using Specified-Negative-Amplitude Input Shapers for Vibration Reduction
,”
ASME J. Dyn. Syst., Meas., Control
,
126
, pp.
210
214
.10.1115/1.1650385
26.
Dhanda
,
A.
, and
Franklin
,
G.
,
2008
, “
Minimum Move-Vibration Control for Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
3
), p.
034503
.10.1115/1.2807149
27.
Singhose
,
W. E.
,
Mills
,
B. W.
, and
Seering
,
W. P.
,
1997
, “
Closed-Form Methods for On-Off Control of Multi-Mode Flexible Structures
,”
Proceedings of the Conference on Decision & Control
, pp.
1381
1386
.
28.
Singhose
,
W.
,
Biediger
,
E.
,
Okada
,
H.
, and
Matunaga
,
S.
,
2006
, “
Closed-Form Specified-Fuel Commands for On-Off Thrusters
,”
J. Guid., Control, Dyn.
,
29
(
3
), pp.
606
611
.10.2514/1.15340
29.
Conord
,
T.
, and
Singh
,
T.
,
2006
, “
Robust Input Shaper Design Using Linear Matrix Inequalities
,”
Proceedings of the IEEE International Conference on Control Applications
, pp.
1470
1475
.
30.
Robertson
,
M.
,
Kozak
,
K.
, and
Singhose
,
W.
,
2006
, “
Computational Framework for Digital Input Shapers Using Linear optimization
,”
IEE Proc.: Control Theory Appl.
,
153
(
3
), pp.
314
322
.
31.
La-orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2001
, “
Control of Flexible Structures With a Projected Phase-Plane Approach
,”
Proceedings of the American Control Conference
, pp.
3817
3823
.
32.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2002
, “
Shaped Phase-Plane Control for Flexible Structures With Friction
,”
Proceedings of the American Control Conference
, Vol.
3
, pp.
1911
1916
.
33.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2002
, “
Shaped Control for Damped Flexible Structures With Friction and Slew Rate Limits
,”
Proceedings of the IEEE Conference on Decision and Control
, Vol.
3
, pp.
3099
3105
.
34.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2003
, “
Fast Seek Control for Flexible Disk Drive Systems With Back EMF and Inductance
,”
Proceedings of the American Control Conference
, Vol.
4
, pp.
3077
3082
.
35.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2003
, “
Shaped Time-Optimal Control for Disk Drive Systems With Back EMF, Slew Rate Limits, and Different Acceleration and Deceleration Rates
,”
Proceedings of the American Control Conference
, Vol.
6
, pp.
4788
4795
.
36.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2004
, “
Shaped Time-Optimal Feedback Controllers for Flexible Structures
,”
ASME J. Dyn. Syst., Meas., and Control
,
126
(
1
), pp.
173
186
.10.1115/1.1637639
37.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2004
, “
Shaped Time-Optimal Feedback Control for Disk-Drive Systems With Back-Electromotive Force
,”
IEEE Trans. Magn.
,
40
(
1
), pp.
85
96
.10.1109/TMAG.2003.821126
38.
La-Orpacharapan
,
C.
, and
Pao
,
L. Y.
,
2005
, “
Fast and Robust Control of Systems With Multiple Flexible Modes
,”
IEEE/ASME Trans. Mechatronics
,
10
(
5
), pp.
521
534
.10.1109/TMECH.2005.856217
39.
Dhanda
,
A.
, and
Franklin
,
G.
,
2010
, “Vibration Reduction Using Time-Optimal Shaping Filters With Reduced Higher-Mode Excitations,” Proceedings of the American Control Conference, pp. 2302–2307.
40.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, New York.
41.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mishchenko
,
E. F.
,
1962
,
The Mathematical Theory of Optimal Processes
,
John Wiley & Sons
,
New York
.
42.
Lee
,
E. B.
, and
Markus
,
L.
,
1967
,
Foundations of Optimal Control Theory
,
John Wiley & Sons
,
New York
.
43.
Bryson
,
A. E.
, and
Ho
,
Y.
,
1975
,
Applied Optimal Control
,
Hemisphere Publishing Corporation
,
Washington
.
44.
Ben-Asher
,
J.
,
Burns
,
J. A.
, and
Cliff
,
E. M.
,
1992
, “
Time-Optimal Slewing of Flexible Spacecraft
,”
J. Guid., Control Dyn.
,
15
(
2
), pp.
360
367
.10.2514/3.20844
45.
Pao
,
L. Y.
, and
Singhose
,
W. E.
,
1997
, “
Verifying Robust Time-Optimal Commands for Multimode Flexible Structures
,”
J. Guid., Control Dyn.
,
20
(
4
), pp.
831
833
.10.2514/2.4123
46.
Tuttle
,
T. D.
, and
Seering
,
W. P.
,
1997
, “
Deriving and Verifying Time-Optimal Commands for Linear Systems
,”
Proceedings of the American Control Conference
, pp.
1325
1329
.
47.
Dhanda
,
A.
, and
Franklin
,
G.
,
2008
, “
Direct Verification of Parametric Solution for Vibration Reduction Control Problems
,”
J. Guid., Control Dyn.
,
31
(
4
), pp.
991
998
.10.2514/1.32975
You do not currently have access to this content.