In this paper, we extend the phase-plane based closed-loop scheme of implementing commands shaped with vibration-reduction filters. A generalized shaping filter is considered in this work which can have negative impulse intensities and different acceleration and deceleration limits. Switching conditions are derived in terms of the filter parameters for both convolution-based and closed-form based shaping techniques. Analytical expressions are provided for the switching curves and various schemes are discussed for selecting appropriate phase-planes and implementing shaped-commands on real-time servomechanisms.
Issue Section:
Research Papers
References
1.
Franklin
, G. F.
, Powell
, J. D.
, and Emami-Naeini
, A.
, 2002
, Feedback Control of Dynamic Systems
, Prentice Hall
, Upper Saddle River, NJ
.2.
Singer
, N. C.
, 1989
, “Residual Vibration Reduction in Computer Controlled Machine
,” Ph.D. thesis, Technical Report MIT Artificial Intelligence Laboratory, Cambridge, MA.3.
Meckl
, P. H.
, and Seering
, W. P.
, 1988
, “Reducing Residual Vibration in System With Uncertain Resonances
,” IEEE Control Syst. Mag.
, 8
(2
), pp. 73
–76
.10.1109/37.18774.
Bhat
, S. P.
, and Miu
, D. K.
, 1990
, “Precise Point-to-Point Positioning Control of Flexible Structures
,” J. Dyn. Sys., Meas., Control
, 112
(4
), pp. 667
–674
.10.1115/1.28961935.
Singh
, T.
, and Vadali
, S. R.
, 1994
, “Robust Time-Optimal Control: Frequency Domain Approach
,” J. Guid., Control Dyn.
, 17
(2
), pp. 346
–353
.10.2514/3.212046.
Wie
, B.
, Sinha
, R.
, and Liu
, Q.
, 1993
, “Robust Time-Optimal Control of Uncertain Structural Dynamic Systems
,” J. Guidance, Control Dyn.
, 15
(5
), pp. 980
–983
.10.2514/3.211147.
Scrivener
, S.
, and Thompson
, R.
, 1994
, “Survey of Time-Optimal Attitude Maneuvers
,” J. Guid., Control Dyn.
, 17
(2
), pp. 225
–233
.10.2514/3.211878.
Singhose
, W. E.
, Seering
, W. P.
, and Singer
, N. C.
, 1997
, “Time-Optimal Negative Input Shapers
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 198
–205
.10.1115/1.28012339.
Tuttle
, T. D.
, and Seering
, W. P.
, 1999
, “Creating Time-Optimal Commands With Practical Constraints
,” J. Dyn. Syst., Meas., Control
, 22
, pp. 241
–250
.10.
Lim
, S. H.
, Stevens
, D.
, and How
, J. P.
, 1999
, “Input Shaping Design for Multi-Input Flexible Systems
,” ASME J. Dyn. Syst., Meas., Control
, 121
, pp. 443
–447
.10.1115/1.280249411.
Dhanda
, A.
, and Franklin
, G.
, 2010
, “Optimal Control Formulations of Vibration Reduction Problems
,” IEEE Trans. Autom. Control
, 55
(2
), pp. 378
–394
.10.1109/TAC.2009.203494012.
Smith
, O. J. M.
, 1957
, “Posicast Control of Damped Oscillatory Systems
,” Proceedings of IRE
, Vol. 45
, pp. 1249
–1255
.13.
Singer
, N. C.
, and Seering
, W. P.
, 1990
, “Preshaping Command Inputs to Reduce System Vibration
,” ASME J. Dyn. Syst., Meas., Control
, 112
, pp. 76
–82
.10.1115/1.289414214.
Balachandran
, B.
, Li
, Y. Y.
, and Fang
, C.
, 1999
, “A Mechanical Filter Concept for Passive and Active Control of Nonlinear Oscillations
,” J. Sound Vib.
, 228
(3
), pp. 651
–682
.10.1006/jsvi.1999.244015.
Li
, Y. Y.
, and Balachandran
, B.
, 2001
, “Analytical Study of System With Mechanical Filter
,” J. Sound Vib
,, 247
(4
), pp. 633
–653
.10.1006/jsvi.2001.376916.
Wagg
, D.
, and Neild
, S. A.
, 2009
, Nonlinear Vibration With Control: For Flexible and Adaptive Structures
, Springer
, New York
.17.
O'Connor
, W. J.
, de la Flor
, F. R.
, McKeown
, D. J.
, and Feliu
, V.
, 2008
, “Wave-Based Control of Non-Linear Flexible Mechanical Systems
,” Nonlinear Dyn.
, 57
(2
), pp. 113
–123
.10.1007/s11071-008-9425-418.
Pao
, L. Y.
, 1994
, “Characteristics of the Time-Optimal Control of Flexible Structures With Damping
,” Proceedings IEEE Conference on Control Applications
, pp. 1299
–304
.19.
Barbieri
, E.
, and Ozguner
, U.
, 1993
, “A New Minimum-Time Control Law for a One-Mode Model of a Flexible Slewing Structure
,” IEEE Trans. Autom. Control
, 38
(1
), pp. 142
–146
.10.1109/9.18632720.
Li
, F.
, and Bainum
, P. M.
, 1994
, “Analytical Time-Optimal Control Synthesis of Fourth-Order System and Maneuvers of Flexible Structures
,” J. Guid., Control, Dyn.
, 17
(6
), pp. 1171
–1178
.10.2514/3.2132921.
Workman
, M. L.
, 1987
, “Adaptive Proximate Time-Optimal Servomechanisms
,” Ph.D. thesis, Stanford University, Stanford, CA.22.
Dhanda
, A.
, and Franklin
, G.
, 2009
, “An Improved 2-DOF Proximate Time Optimal Servomechanism
,” IEEE Trans. Magn.
, 45
(5
), pp. 2151
–2164
.10.1109/TMAG.2009.201324723.
Singhose
, W. E.
, Seering
, W. P.
, and Singer
, N. C.
, 1996
, “Input Shaping for Vibration Reduction With Specified Insensitivity to Modelling Error
,” Proceedings of the Japan/USA Symposium on Flexible Automation
, pp. 307
–313
.24.
Singer
, N. C.
, Pao
, L. Y.
, Singhose
, W. E.
, and Seering
, W. P.
, 1996
, “An Efficient Algorithm for the Generation of Multiple-Mode Input Shaping Sequence
,” Proceedings of the IEEE International Conference on Control Applications
, pp. 373
–378
.25.
Singhose
, W.
, Biediger
, E. O.
, Chen
, Y.
, and Mills
, B.
, 2004
, “Reference Command Shaping Using Specified-Negative-Amplitude Input Shapers for Vibration Reduction
,” ASME J. Dyn. Syst., Meas., Control
, 126
, pp. 210
–214
.10.1115/1.165038526.
Dhanda
, A.
, and Franklin
, G.
, 2008
, “Minimum Move-Vibration Control for Flexible Structures
,” ASME J. Dyn. Syst., Meas., Control
, 130
(3
), p. 034503
.10.1115/1.280714927.
Singhose
, W. E.
, Mills
, B. W.
, and Seering
, W. P.
, 1997
, “Closed-Form Methods for On-Off Control of Multi-Mode Flexible Structures
,” Proceedings of the Conference on Decision & Control
, pp. 1381
–1386
.28.
Singhose
, W.
, Biediger
, E.
, Okada
, H.
, and Matunaga
, S.
, 2006
, “Closed-Form Specified-Fuel Commands for On-Off Thrusters
,” J. Guid., Control, Dyn.
, 29
(3
), pp. 606
–611
.10.2514/1.1534029.
Conord
, T.
, and Singh
, T.
, 2006
, “Robust Input Shaper Design Using Linear Matrix Inequalities
,” Proceedings of the IEEE International Conference on Control Applications
, pp. 1470
–1475
.30.
Robertson
, M.
, Kozak
, K.
, and Singhose
, W.
, 2006
, “Computational Framework for Digital Input Shapers Using Linear optimization
,” IEE Proc.: Control Theory Appl.
, 153
(3
), pp. 314
–322
.31.
La-orpacharapan
, C.
, and Pao
, L. Y.
, 2001
, “Control of Flexible Structures With a Projected Phase-Plane Approach
,” Proceedings of the American Control Conference
, pp. 3817
–3823
.32.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2002
, “Shaped Phase-Plane Control for Flexible Structures With Friction
,” Proceedings of the American Control Conference
, Vol. 3
, pp. 1911
–1916
.33.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2002
, “Shaped Control for Damped Flexible Structures With Friction and Slew Rate Limits
,” Proceedings of the IEEE Conference on Decision and Control
, Vol. 3
, pp. 3099
–3105
.34.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2003
, “Fast Seek Control for Flexible Disk Drive Systems With Back EMF and Inductance
,” Proceedings of the American Control Conference
, Vol. 4
, pp. 3077
–3082
.35.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2003
, “Shaped Time-Optimal Control for Disk Drive Systems With Back EMF, Slew Rate Limits, and Different Acceleration and Deceleration Rates
,” Proceedings of the American Control Conference
, Vol. 6
, pp. 4788
–4795
.36.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2004
, “Shaped Time-Optimal Feedback Controllers for Flexible Structures
,” ASME J. Dyn. Syst., Meas., and Control
, 126
(1
), pp. 173
–186
.10.1115/1.163763937.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2004
, “Shaped Time-Optimal Feedback Control for Disk-Drive Systems With Back-Electromotive Force
,” IEEE Trans. Magn.
, 40
(1
), pp. 85
–96
.10.1109/TMAG.2003.82112638.
La-Orpacharapan
, C.
, and Pao
, L. Y.
, 2005
, “Fast and Robust Control of Systems With Multiple Flexible Modes
,” IEEE/ASME Trans. Mechatronics
, 10
(5
), pp. 521
–534
.10.1109/TMECH.2005.85621739.
Dhanda
, A.
, and Franklin
, G.
, 2010
, “Vibration Reduction Using Time-Optimal Shaping Filters With Reduced Higher-Mode Excitations,” Proceedings of the American Control Conference, pp. 2302–2307.40.
Boyd
, S.
, and Vandenberghe
, L.
, 2004
, Convex Optimization
, Cambridge University Press
, New York.41.
Pontryagin
, L. S.
, Boltyanskii
, V. G.
, Gamkrelidze
, R. V.
, and Mishchenko
, E. F.
, 1962
, The Mathematical Theory of Optimal Processes
, John Wiley & Sons
, New York
.42.
Lee
, E. B.
, and Markus
, L.
, 1967
, Foundations of Optimal Control Theory
, John Wiley & Sons
, New York
.43.
Bryson
, A. E.
, and Ho
, Y.
, 1975
, Applied Optimal Control
, Hemisphere Publishing Corporation
, Washington
.44.
Ben-Asher
, J.
, Burns
, J. A.
, and Cliff
, E. M.
, 1992
, “Time-Optimal Slewing of Flexible Spacecraft
,” J. Guid., Control Dyn.
, 15
(2
), pp. 360
–367
.10.2514/3.2084445.
Pao
, L. Y.
, and Singhose
, W. E.
, 1997
, “Verifying Robust Time-Optimal Commands for Multimode Flexible Structures
,” J. Guid., Control Dyn.
, 20
(4
), pp. 831
–833
.10.2514/2.412346.
Tuttle
, T. D.
, and Seering
, W. P.
, 1997
, “Deriving and Verifying Time-Optimal Commands for Linear Systems
,” Proceedings of the American Control Conference
, pp. 1325
–1329
.47.
Dhanda
, A.
, and Franklin
, G.
, 2008
, “Direct Verification of Parametric Solution for Vibration Reduction Control Problems
,” J. Guid., Control Dyn.
, 31
(4
), pp. 991
–998
.10.2514/1.32975Copyright © 2014 by ASME
You do not currently have access to this content.