The stability boundaries of LTI time-delayed systems with respect to the delays are studied in two different domains: (i) delay space (DS) and (ii) spectral delay space (SDS), which contains pointwise frequency information as well as the delay. SDS is the preferred domain due to its advantageous boundedness properties and simple construct of stability transition boundaries. These transitions at the mentioned boundaries, however, present some conceptual challenges in SDS. This transition property enables us to extract the corresponding local stability variation properties in the DS, while it does not have any implication in the preferred SDS. The novel aspect of the investigation is to introduce a comparison mechanism between these two domains, DS and SDS, from the stability transition perspective. Interestingly, we are able to prove their equivalency, which provides complementary insight to the parametric stability variations.

References

References
1.
Bellman
,
R.
, and
Cooke
,
K.
,
1963
,
Differential Difference Equations
,
Academic Press
,
New York
.
2.
Hale
,
J. K.
, and
Huang
,
W.
,
1993
, “
Global Geometry of the Stable Regions for Two Delay Differential Equations
J. Math. Anal. Appl.
,
178
, pp.
344
362
.10.1006/jmaa.1993.1312
3.
Hale
,
J. K.
,
Infante
,
E. F.
, and
Tsen
,
F.-S. P.
,
1985
, “
Stability in Linear Delay Equations
,”
J. Math. Anal. Appl.
,
105
, pp.
533
555
.10.1016/0022-247X(85)90068-X
4.
Hsu
,
C. S.
, and
Bhatt
,
K. L.
,
1966
, “
Stability Charts for Second-Order Dynamical Systems With Time Lag
,”
ASME J. Appl. Mech.
,
33
, pp.
119
124
.10.1115/1.3624968
5.
MacDonald
,
N.
,
1987
, “
An Interference Effect of Independent Delays
,”
IEE Proc.
,
134
, pp.
38
42
.10.1049/ip-d.1987.0006
6.
Gu
,
K.
,
Niculescu
,
S.-I.
, and
Chen
,
J.
,
2005
, “
On Stability Crossing Curves for General Systems With Two Delays
,”
J. Math. Anal. Appl.
,
311
(
1
), pp.
231
253
.10.1016/j.jmaa.2005.02.034
7.
Olgac
,
N.
, and
Cavdaroglu
,
E. M.
,
2011
, “
Full-State Feedback Controller Design With “Delay Scheduling” for Cart-and-Pendulum Dynamics
,”
Mechatronics
,
21
(
1
), pp.
38
47
.10.1016/j.mechatronics.2010.08.007
8.
Chen
,
J.
,
Gu
,
G.
, and
Nett
,
C. N.
,
1995
, “
A New Method for Computing Delay Margins for Stability of Linear Delay Systems
,”
Syst. Control Lett.
,
26
, pp.
107
117
.10.1016/0167-6911(94)00111-8
9.
Cooke
,
K. L.
, and
Van Den Driessche
,
P.
,
1986
, “
On Zeroes of Some Transcendental Equations
,”
Funkcial. Ekvac.
,
29
, pp.
77
90
.
10.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time Delayed LTI Systems
,”
IEEE Trans. Autom. Control
,
47
, pp.
793
797
.10.1109/TAC.2002.1000275
11.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
791
800
.10.1115/1.2037086
12.
Campbell
,
S. A.
,
1999
, “
Stability and Bifurcation of a Simple Neural Network With Multiple Time Delays
,”
Fields Inst. Commun.
,
21
, pp.
65
79
.
13.
Datko
,
R.
,
1985
, “
Remarks Concerning the Asymptotic Stability and Stabilization of Linear Delay Differential Equations
,”
J. Math. Anal. Appl.
,
111
, pp.
571
584
.10.1016/0022-247X(85)90236-7
14.
Toker
,
O.
, and
Ozbay
,
H.
,
1996
, “
Complexity Issues in Robust Stability of Linear Delay-Differential Dystems
,”
Math. Control Signals Syst.
,
9
(
4
), pp.
386
400
.10.1007/BF01211858
15.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), pp.
88
97
.10.1115/1.1876494
16.
Olgac
,
N.
, and
Sipahi
,
R.
,
2006
, “
A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems
,”
Syst. Control Lett.
,
55
(
10
), pp.
819
825
.10.1016/j.sysconle.2006.03.010
17.
Breda
,
D.
,
2012
, “
On Characteristic Roots and Stability Charts of Delay Differential Equations
,”
Int. J. Rob. Nonlinear Control
,
22
(
8
), pp.
892
917
.10.1002/rnc.1734
18.
Neimark
,
J. I.
,
1949
, “
D-subdivision and Spaces of Quasi-Polynomials
,”
Prikl. Mat. Mech.
,
13
, pp.
349
380
.
19.
Kolmanovski
,
V. B.
, and
Nosov.
,
V. R.
,
1986
,
Stability of Functional Differential Equations
,
Academic
,
London
.
20.
Olgac
,
N.
, and
Sipahi
,
R.
,
2003
, “
Degenerate Cases in Using the Direct Method
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
194
201
.10.1115/1.1557751
21.
Li
,
X.-G.
,
Niculescu
,
S.-I.
,
Cela
,
A.
,
Wang
,
H.-H.
, and
Cai
,
T.-Y.
,
2013
, “
On Computing Puiseux Series for Multiple Imaginary Characteristic Roots of LTI Systems With Commensurate Delays
,”
IEEE Trans. Autom. Control
,
58
, pp.
1338
1343
.10.1109/TAC.2012.2226102
22.
Fazelinia
,
H.
,
2007
, “
A Novel Stability Analysis of Systems With Multiple Delays and Its Application to High Speed Milling Chatter
,” Ph.D. dissertation, University of Connecticut, Storrs, CT.
23.
Ergenc
,
A.
,
Olgac
,
N.
, and
Fazelinia
,
H.
,
2007
, “
Extended Kronecker Summation for Determining the Kernel and Offspring of LTI Systems With Multiple Delays
,”
SIAM J. Control Optim.
,
46
(
1
), pp.
143
155
.10.1137/06065180X
24.
Fazelinia
,
H.
,
Sipahi
,
R.
, and
Olgac
,
N.
,
2007
, “
Stability Robustness Analysis of Multiple Time Delayed Systems Using ‘Building Block’ Concept
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
799
810
.10.1109/TAC.2007.898076
You do not currently have access to this content.