This paper describes an analytical procedure to calculate the time-optimal trajectory for a mobile Cartesian manipulator to traverse between any two fruits it picks up it. The goal is to minimize the time required from the retrieval of one fruit to that of the next while adhering to velocity, acceleration, location, and endpoint constraints. This is accomplished using a six stage procedure, based on Bellman's Principle of Optimality and nonsmooth optimization that is completely analytical and requires no numerical computations. The procedure sequentially calculates all relevant parameters, from which side of the mobile platform to place the fruit on to the velocity profile and drop-off point, that yield a minimum time trajectory. In addition, it provides a time window under which the mobile manipulator can traverse from any fruit to any other, which can be used for a globally optimal retrieving sequence algorithm.

References

1.
Jazar
,
R. N.
,
2010
,
Theory of Applied Robotics—Kinematics, Dynamics, and Control
,
Springer
, New York.
2.
Shin
,
K. G.
, and
McKay
,
N. D.
,
1986
, “
Selection of Near Minimum Time Geometric Paths for Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
31
, pp.
501
511
.10.1109/TAC.1986.1104316
3.
Ata
,
A. A.
,
2007
, “
Optimal Trajectory Planning of Manipulators: A Review
,”
J. Eng. Sci. Technol.
,
2
(
1
), pp.
32
54
. Available at: http://jestec.taylors.edu.my/Vol%202%20Issue%201%20April%2007/32-54%20Ata.pdf
4.
Chettibi
,
T.
,
Lehtihet
,
H. E.
,
Haddad
,
M.
, and
Hanchi
,
S.
,
2004
, “
Minimum Cost Trajectory Planning for Industrial Robots
,”
Eur. J. Mech.
,
23
, pp.
703
715
.10.1016/j.euromechsol.2004.02.006
5.
Gasparetto
,
A.
,
Boscariol
,
P.
,
Lanzutti
,
A.
, and
Vidoni
,
R.
,
2012
, “
Trajectory Planning in Robotics
,”.
Math. Comput. Sci.
,
6
, pp.
269
279
.10.1007/s11786-012-0123-8
6.
Willigenburg
,
L. G.
,
Hol
,
C. W. J.
, and
Henten
,
E. J.
,
2004
, “
On-line Near Minimum-Time Path Planning and Control of an Industrial Robot for Picking Fruits
,”
Comput. Electron. Agric.
,
44
, pp.
223
237
.10.1016/j.compag.2004.05.004
7.
Bendana
,
Y. R.
,
1993
, “
Time Optimal Motion Control of Two Dimensional Linear Stepper Motors
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.
8.
Xi
,
N.
, and
Tarn
,
T. J.
,
1999
, “
Sensor-Based Planning and Control for Robotic Systems: An Event-Based Approach
,”
Control in Robotics and Automation: Sensor-Based Integration
, B. K. Ghosh, N. Xi, and B. J. Tarn, eds.,
Academic Press
,
San Diego, CA
.
9.
Edan
,
Y.
, and
Miles
,
G.
,
1993
, “
Design of an Agricultural Robot for Harvesting Melons
,”
Am. Soc. Agric. Eng.
,
36
(
2
), pp.
593
603
.
10.
Edan
,
Y.
, and
Miles
,
G. E.
,
1994
, “
Systems Engineering of Agricultural Robot Design
,”
IEEE Trans. Syst., Man, Cybern.
,
24
, pp.
1259
1265
.10.1109/21.299707
11.
Edan
,
Y.
,
Engel
,
B. A.
, and
Miles
,
G. E.
,
2003
, “
Intelligent Control System Simulation of an Agricultural Robot
,”
J. Intell. Rob. Syst.
,
8
(
2
), pp.
267
284
.10.1007/BF01257998
12.
Edan
,
Y.
,
Flash
,
T.
,
Shmulevich
,
I.
,
Sarig
,
Y.
, and
Peiper
,
U. M.
,
1990
, “
An Algorithm Defining the Motions of a Citrus Picking Robot
,”
J. Agric. Eng. Res.
,
46
, pp.
259
273
.10.1016/S0021-8634(05)80131-3
13.
Edan
,
Y.
,
Flash
,
T.
,
Peiper
,
U. M.
,
Shmulevich
,
I.
, and
Sarig
,
Y.
,
1991
, “
Near-Minimum-Time Task Planning for Fruit-Picking Robots
,”
IEEE Trans. Rob. Automa.
,
7
, pp.
48
56
.10.1109/70.68069
14.
Henten
,
E. J.
,
Hemming
,
J.
,
Tuijl
,
B. A. J.
,
Kornet
,
J. G.
,
Meuleman
,
J.
,
Bontsema
,
J.
, and
Os
,
E. A.
,
2002
, “
An Autonomous Robot for Harvesting Cucumbers in Greenhouses
,”
Auton. Rob.
,
13
, pp.
241
258
.10.1023/A:1020568125418
15.
Henten
,
E. J.
,
Hemming
,
J.
,
Tuijl
,
B. A. J.
,
Kornet
,
J. G.
, and
Bontsema
,
J.
,
2003
, “
Collision-Free Motion Planning for a Cucumber Picking Robot
,”
Biosyst. Eng.
,
86
(
2
), pp.
135
144
.10.1016/S1537-5110(03)00133-8
16.
Vansteenwegen
,
P.
,
Souffriau
,
W.
, and
Oudheusen
,
D.
,
2011
, “
The Orienteering Problem: A Survey
,”
Eur. J. Oper. Res.
,
209
, pp.
1
10
.10.1016/j.ejor.2010.03.045
17.
Korte
,
B.
, and
Vygen
,
J.
,
2008
,
Combinatorial Optimization—Theory and Algorithms
,
Springer
, Heidelberg.
18.
Naidu
,
D. S.
,
2003
,
Optimal Control Systems
.,
CRC Press
, Boca Raton, FL.
19.
Kirk
,
D.
,
1998
,
Optimal Control Theory: An Introduction
.,
Dover Publications
,
Mineola, NY
, pp.
240
259
.
20.
Bronshtein
,
I. N.
,
Semendyayev
,
K. A.
,
Musio
,
G.
, and
Muehlig
,
H.
,
2005
,
Handbook of Mathematics
,
Springer
,
Berlin
.
21.
Zeidler
,
E.
,
2004
,
Oxford Users' Guide to Mathematics
,
Oxford University Press
, Oxford, UK.
22.
Mann
,
M. P.
,
Rubinstein
,
D.
,
Shmulevich
,
I.
, and
Zion
,
B.
,
2013
, “
Motion Planning of a Mobile Cartesian Manipulator for Optimal Harvesting of 2-D Crops
,”
Trans. ASABE
,
57
(1), (submitted).
You do not currently have access to this content.