This paper presents a two degree of freedom (DOF) controller for combine harvester header height control (HHC). Fundamental limitations to the tracking and disturbance rejection bandwidth for feedback control designs exist in the HHC system due to the considerable actuator delay and underactuated and noncollocated mechanical design. In this work, we utilize H optimal control design to ensure closed-loop stability and robust performance, and augment the feedback loop with a feedforward control structure based on readily available global positioning system (GPS) information. The GPS provides anticipatory information of the field map elevation; albeit with noise, resolution limits, and latency. The elevation changes result in disturbances to the header height control problem and the feedforward controller uses the knowledge of the field to increase the overall disturbance rejection bandwidth. Simulation and experimental results illustrate the performance improvements resulting from the 2-DOF design over the stand alone feedback controller, which removes a long standing obstacle in increasing the harvesting productivity. Additionally, an error analysis examines the effect of uncertainties from system modeling and field map measurements on the system performance.

References

References
1.
Reid
,
J. F.
,
2011
, “
The Impact of Mechanization on Agriculture
,”
Bridge Linking Eng. Soc.
,
41
(
3
), pp.
22
29
.
2.
Glancey
,
J. L.
,
1997
, “
Analysis of Header Loss From Pod Stripper Combines in Green Peas
,”
J. Agric. Eng. Res.
,
68
(
1
), pp.
1
10
.10.1006/jaer.1996.0122
3.
Junsiri
,
C.
, and
Chinsuwan
,
W.
,
2009
, “
Prediction Equations for Header Losses of Combine Harvesters When Harvesting Thai Hom Mali Rice
,”
Songklanakarin J. Sci. Technol.
,
31
(
6
), pp.
613
620
.
4.
Xie
,
Y.
,
2013
, “
Integrated Plant and Control Design for Vehicle—Environment Interaction
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
5.
Lopes
,
G. T.
,
Magalhães
,
P. S. G.
, and
Nóbrega
,
E. G. O.
,
2002
, “
Optimal Header Height Control System for Combine Harvesters
,”
Biosyst. Eng.
,
81
(
3
), pp.
261
272
.10.1006/bioe.2001.0016
6.
Xie
,
Y.
,
Alleyne
,
A.
,
Greer
,
A.
, and
Deneault
,
D.
,
2010
, “
Header Height Control of a Combine Harvester System
,”
Proceeding of the 2010 ASME Dynamic Systems and Control Conference
, Cambridge, MA, Sept. 12–15,
ASME
Paper No. DSCC2010-4088, pp.
7
14
.10.1115/DSCC2010-4088
7.
Xie
,
Y.
,
Alleyne
,
A. G.
,
Greer
,
A.
, and
Deneault
,
D.
,
2013
, “
Fundamental Limits in Combine Harvester Header Height Control
,”
ASME J. Dyn. Syst.
,
135
(
3
), p.
034503
.10.1115/1.4023209
8.
Abd Aziz
,
S.
,
Steward
,
B. L.
,
Tang
,
L.
, and
Karkee
,
M.
,
2009
, “
Utilizing Repeated GPS Surveys From Field Operations for Development of Agricultural Field DEMs
,”
T. ASABE
,
52
(
4
), pp.
1057
1067
.10.13031/2013.27775
9.
Vilanova
,
R.
, and
Serra
,
I.
,
1997
, “
Realization of Two-Degrees-of-Freedom Compensators
,”
Proc. IEEE Control Theory Appl.
,
144
(
6
), pp.
589
595
.10.1049/ip-cta:19971617
10.
Goodwin
,
G. C.
,
Graebe
,
S. F.
, and
Salgado
,
M. E.
,
2001
,
Control System Design
,
Prentice Hall
,
Upper Saddle River, NJ
, Chap. 10.
11.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
John Wiley & Sons
,
New York
, Chap. 5.
12.
Chen
,
J.
,
Hara
,
S.
,
Qiu
,
L.
,
Middleton
,
R. H.
,
2008
, “
Best Achievable Tracking Performance in Sampled-Data Systems via LTI Controllers
,”
IEEE Trans. Autom. Control
,
53
(
11
), pp.
2467
2479
.10.1109/TAC.2008.2006924
13.
Hara
,
S.
,
Bakhtiar
,
T.
, and
Kanno
,
M.
,
2007
, “
The Best Achievable H2 Tracking Performances for SIMO Feedback Control Systems
,”
J. Control Sci. Eng.
, pp. 1–12.10.1155/2007/93904
14.
Morari
,
M.
, and
Zafiriou
,
E.
,
1989
,
Robust Process Control
,
Prentice Hall
,
Englewood Cliffs, NJ
, Chap. 7.
15.
Stein
,
G.
,
2003
, “
Respect the Unstable
,”
IEEE Control Syst. Mag.
,
23
(
4
), pp.
12
25
.10.1109/MCS.2003.1213600
16.
Meinsma
,
G.
, and
Zwart
,
H.
,
2000
, “
On H∞ Control for Dead-Time Systems
,”
IEEE Trans. Autom. Control
,
45
(
2
), pp.
272
285
.10.1109/9.839949
17.
Pipeleers
,
G.
,
Demeulenaere
,
B.
,
De
Schutter
,
J.
, and
Swevers
,
J.
,
2007
, “
Design of Robust Optimal Feedforward Controllers for Periodic Disturbances
,”
Proceedings of American Control Conference
, New York, pp.
5333
5340
.
18.
Flores
,
J.
,
Tang
,
Y.
, and
Osorio
,
A.
,
1993
, “
Adaptive Feedforward Control and Disturbance Cancellation
,”
Proceedings of the 32nd IEEE Conference on Decision and Control
, San Antonio, TX, pp.
2623
2628
.
19.
Guo
,
X.
, and
Bodson
,
M.
,
2010
, “
Equivalence Between Adaptive Feedforward Cancellation and Disturbance Rejection Using the Internal Model Principle
,”
Int. J. Adapt. Control
,
24
(
3
), pp.
211
218
.10.1002/acs.1117
20.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
21.
Tsao
,
T. C.
, and
Tomizuka
,
M.
,
1987
, “
Adaptive Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst.
,
109
, pp.
349
354
.10.1115/1.3143866
22.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
802
823
.10.1109/TCST.2007.903345
23.
The MathWorks,
2010
, “
Robust Control Toolbox Manual
,” http://www.mathworks.com/help/pdf_doc/robust/robust_ug.pdf
24.
Xie
,
Y.
, and
Alleyne
,
A.
,
2011
, “
Integrated Plant and Controller Design of a Combine Harvester System
,”
Proceedings of ASME DSCC Dynamic Systems and Control Conference
, Arlington, VA, Oct. 31–Nov. 2,
ASME
Paper No. DSCC2011-5959, pp.
819
825
.10.1115/DSCC2011-5959
You do not currently have access to this content.