Pneumatic muscle actuators offer a higher force-to-weight ratio compared to traditional cylinder actuators, and introduce stick-slip-free operation that offers an interesting option for positioning systems. Despite several advantages, pneumatic muscle actuators are commonly avoided in industrial applications, mainly due to rather different working principles. Due to the highly nonlinear characteristics of the muscle actuator and pneumatic system, a reliable control strategy is required. Although muscle actuators are widely studied, the literature lacks detailed studies where the performance for servo systems is compared with traditional pneumatic cylinders. In this paper, a pneumatic servo actuation system is compared with a traditional cylinder actuator. As the overall system dynamics are highly nonlinear and not well defined, a sliding mode control (SMC) strategy is chosen for the control action. In order to improve the tracking performance, an SMC strategy with an integral action (SMCI) is also implemented. The control algorithms are experimentally applied on the pneumatic muscle and the cylinder actuator, for the purposes of position tracking. The robustness of the systems are verified and compared by varying the applied loads.

References

References
1.
Pierce
,
R. C.
,
1940
, “
Expansible Cover
,” U.S. Patent No. 2,211,478.
2.
De Haven
,
H.
,
1949
, “
Tensioning Device for Producing a Linear Pull
,” U.S. Patent No. 2,483,088.
3.
Gaylord
,
R. H.
,
1958
, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2,844,126.
4.
Schulte
,
R. A.
,
1961
, “
The Characteristics of the McKibben Artificial Muscle
,”
The Applications of External Power in Prosthetics and Orthotics, National Academy of Sciences
, National Research Council, pp.
94
115
.
5.
Chou
,
P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Robo. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
6.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Bowler
,
C. J.
,
1997
, “
Investigation of Bipedal Robot Locomotion Using Pneumatic Muscle Actuators
,”
IEEE Proceedings of the International Conference on Robotics and Automation
, Albuquerque, New Mexico, Vol.
1
, pp.
799
804
.
7.
Klute
,
G. K.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
386
388
.10.1115/1.482478
8.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscles
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.10.1109/37.833638
9.
Plettenburg
,
D. H.
,
2005
, “
Pneumatic Actuators: A Comparison of Energy-to-Mass Ratio's
,”
Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics
, Chicago, IL, pp.
545
549
.
10.
Festo,
2002
, “
Fluidic Muscle MAS
,” Festo Brochure.
11.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Goodwin
,
M. J.
,
1995
, “
Control of Pneumatic Muscle Actuators
,”
IEEE Control Syst.
,
15
(
1
), pp.
40
48
.10.1109/37.341863
12.
Lilly
,
J. H.
,
2003
, “
Adaptive Tracking for Pneumatic Muscle Actuators in Bicep and Tricep Configurations
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
11
(
3
), pp.
333
339
.10.1109/TNSRE.2003.816870
13.
Medrano-Cerda
,
G. A.
,
Bowler
,
C. J.
, and
Caldwell
,
D. G.
,
1995
, “
Adaptive Position Control of Antagonistic Pneumatic Muscle Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Pittsburgh, pp.
378
383
.
14.
Hesselroth
,
T.
,
Sarkar
,
K.
,
Van der Smagt
,
P.
, and
Schulten
,
K.
,
1994
, “
Neural Network Control of a Pneumatic Robot Arm
,”
IEEE Trans. Syst., Man Cybern.
,
24
(
1
), pp.
28
38
.10.1109/21.259683
15.
Chan
,
S. W.
,
Lilly
,
J. H.
,
Repperger
,
D. W.
, and
Berlin
,
J. E.
,
2003
, “
Fuzzy PD+I Learning Control for a Pneumatic Muscle
,”
12th IEEE International Conference on Fuzzy Systems
, St. Louis, Vol.
1
, pp.
278
283
.
16.
Balasubramanian
,
K.
, and
Rattan
,
K. S.
,
2003
, “
Feedforward Control of a Nonlinear Pneumatic Muscle System Using Fuzzy Logic
,”
12th IEEE International Conference on Fuzzy Systems
, St. Louis, Vol.
1
, pp.
272
277
.
17.
Hildebrandt
,
A.
,
Sawodny
,
O.
,
Neumann
,
R.
, and
Hartmann
,
A.
,
2002
, “
A Flatness Based Design For Tracking Control of Pneumatic Muscle Actuators
,”
Proceedings of 7th International Conference on Automation, Robotics and Vision
, Singapore, pp.
1151
1161
.
18.
Aschemann
,
H.
, and
Hofer
,
E. P.
,
2004
, “
Flatness-Based Trajectory Control of Pneumatically Driven Carriage With Uncertainties
,”
Proceedings of 6th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2004)
, F. Allgöwer and M. Zeitz, eds., Elsevier, Kidlington, Oxford, Vol.
1
, pp.
225
230
.
19.
Carbonell
,
P.
,
Jiang
,
Z. P.
, and
Repperger
,
D. W.
,
2001
, “
Nonlinear Control of a Pneumatic Muscle Actuator: Backstepping vs. Sliding Mode
,”
IEEE Proceedings of International Conference on Control Applications
, Mexico City, Mexico, pp.
167
172
.
20.
Lilly
,
J. H.
, and
Yang
,
L.
,
2005
, “
Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
550
558
.10.1109/TCST.2005.847333
21.
Aschemann
,
H.
, and
Schindele
,
D.
,
2008
, “
Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators
,
" IEEE Trans. Ind. Electron.
,
11
(
55
), pp.
3855
3864
.10.1109/TIE.2008.2003202
22.
Shen
,
X.
,
2010
, “
Nonlinear Model-Based Control of Pneumatic Artificial Muscle Actuator Systems
,”
Control Eng. Pract.
,
18
(
3
), pp.
311
317
.10.1016/j.conengprac.2009.11.010
23.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2000
, “
Improved Modeling and Assessment of Pneumatic Muscle Actuators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Francisco, CA, pp.
3641
3646
.
24.
Davis
,
S.
,
Tsagarakis
,
N. G.
,
Canderle
,
J.
, and
Caldwell
,
D. G.
,
2003
, “
Enhanced Modeling and Performance in Braided Pneumatic Muscle Actuators
,”
Int. J. Rob. Res.
,
22
(
3–4
), pp.
213
227
.10.1177/0278364903022003006
25.
Davis
,
S.
, and
Caldwell
,
D. G.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Robot. Res.
,
25
(
4
), pp.
359
369
.10.1177/0278364906063227
26.
Jouppila
,
V.
,
Gadsden
,
S. A.
, and
Ellman
,
A.
,
2010
, “
Modeling and Identification of a Pneumatic Muscle Actuator System Controlled by an On/Off Solenoid Valve
,”
Workshop Proceedings of the 7th International Fluid Power Conference
, Aachen, Germany, pp.
167
182
.
27.
International Organization for Standardization,
1989
, “
Pneumatic Fluid Power—Components Using Compressible Fluids—Determination of Flow-Rate Characteristics
,” Report No. ISO 6358:1989.
28.
Utkin
,
V. I.
,
1978
, Sliding Modes and Their Application in Variable Structure Systems, Mir Publishers, Moscow.
29.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
NJ
, Chap. VII.
You do not currently have access to this content.