This research investigates a novel data-driven approach to condition monitoring of electromechanical actuators (EMAs) consisting of feature extraction and fault classification. The approach is able to accommodate time-varying loads and speeds since EMAs typically operate under nonsteady conditions. The feature extraction process exposes fault frequencies in signal data that are synchronous with motor position through a series of signal processing techniques. A resulting reduced dimension feature is then used to determine the condition with a trained Bayesian classifier. The approach is based on signal analysis in the frequency domain of inherent EMA signals and accelerometers. For this work, two common failure modes, bearing and ball screw faults, are seeded on a MOOG MaxForce EMA. The EMA is then loaded using active and passive load cells with measurements collected via a dSPACE data acquisition and control system. Typical position commands and loads are utilized to simulate “real-world” inputs and disturbances and laboratory results show that actuator condition can be determined over a range of inputs. Although the process is developed for EMAs, it can be used generically on other rotating machine applications as a Health and Usage Management System (HUMS) tool.

References

References
1.
Rosero
,
J.
,
Ortega
,
J.
,
Aldabas
,
E.
, and
Romeral
,
L.
,
2007
, “
Moving Towards a More Electric Aircraft
,”
IEEE Aerosp. Electron. Syst. Mag.
,
22
, pp.
3
9
.10.1109/MAES.2007.340500
2.
Botten
,
L. S.
,
Whitley
,
R. C.
, and
King
,
D. A.
,
2000
, “
Flight Control Actuation Technology for Next Generation All-Electric Aircraft
,”
Technol. Rev. J.
, pp. 55–68.
3.
Hao
,
L.
,
Jinsong
,
Y.
,
Ping
,
Z.
, and
Xingshan
,
L.
,
2009
, “
A Review on Fault Prognostics in Integrated Health Management
,”
The Ninth International Conference on Electronic Measurement and Instruments
.
4.
Smith
,
M.
,
Byington
,
C.
,
Watson
,
M.
,
Bharadwaj
,
S.
,
Swerdon
,
G.
,
Goebel
,
K.
, and
Balaban
,
E.
,
2009
, “
Experimental and Analytical Development of Health Management for Electro-Mechanical Actuators
,”
IEEE Aerospace Conference
, pp.
1
14
.
5.
Byington
,
S. C.
,
Watson
,
M.
,
Edwards
,
D.
, and
Stoelting
,
P.
,
2004
, “
A Model-Based Approach to Prognotics and Health Management for Flight Control Actuators
,”
IEEE Aerospace Conference Proceedings
, Vol.
6
, pp.
3551
3562
.
6.
Balaban
,
E.
,
Bansal
,
P.
,
Stoelting
,
P.
,
Saxena
,
A.
,
Goebel
,
K.
, and
Curran
,
S.
,
2009
, “
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
,”
IEEE Aerospace Conference
, pp.
1
13
.
7.
Bodden
,
D.
,
Scott Clements
,
N.
,
Schley
,
B.
, and
Jenney
,
G.
,
2007
, “
Seeded Failure Testing and Analysis of an Electro-Mechanical Actuator
,”
IEEE Aerospace Conference
, pp.
1
8
.
8.
Baybutt
,
M.
,
Nanduri
,
S.
,
Kalgren
,
P.
,
Bodden
,
D.
,
Clements
,
N.
, and
Alipour
,
S.
,
2008
, “
Seeded Fault Testing and In-Situ Analysis of Critical Electronic Components in EMA Power Circuitry
,”
IEEE Aerospace Conference
, pp.
1
12
.
9.
Byington
,
C.
,
Watson
,
M.
, and
Edwards
,
D.
,
2004
, “
Data-Driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components
,”
IEEE Aerospace Conference Proceedings
, Vol.
6
, pp.
3581
3589
.
10.
Brown
,
D.
,
Georgoulas
,
G.
,
Bae
,
H.
,
Vachtsevanos
,
G.
,
Chen
,
R.
,
Ho
,
Y.
,
Tannenbaum
,
G.
, and
Schroeder
,
J.
,
2009
, “
Particle Filter Based Anomaly Detection for Aircraft Actuator Systems
,”
IEEE Aerospace Conference
.
11.
Romeral
,
L.
,
Rosero
,
J.
,
Espinosa
,
A.
,
Cusido
,
J.
, and
Ortega
,
J.
,
2010
, “
Electrical Monitoring for Fault Detection in an EMA
,”
IEEE Aerosp. Electron. Syst. Mag.
,
25
, pp.
4
9
.10.1109/MAES.2010.5463950
12.
Huh
,
K.-K.
,
Lorenz
,
R.
, and
Nagel
,
N.
,
2009
, “
Gear Fault Diagnostics Integrated in the Motion Servo Drive for Electromechanical Actuators
,”
IEEE Energy Conversion Congress and Exposition
, pp.
2255
2262
.
13.
Zhou
,
W.
,
Habetler
,
T.
, and
Harley
,
R.
,
2007
, “
Stator Current-Based Bearing Fault Detection Techniques: A General Review
,”
IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives
, pp.
7
10
.
14.
Malhi
,
A.
, and
Gao
,
R.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
, pp.
1517
1525
.10.1109/TIM.2004.834070
15.
Zhang
,
B.
,
Georgoulas
,
G.
,
Orchard
,
M.
,
Saxena
,
A.
,
Brown
,
D.
,
Vachtsevanos
,
G.
, and
Liang
,
S.
,
2008
, “
Rolling Element Bearing Feature Extraction and Anomaly Detection Based on Vibration Monitoring
,”
16th Mediterranean Conference on Control and Automation
, pp.
1792
1797
.
16.
Rajagopalan
,
S.
,
Habetler
,
T.
,
Harley
,
R.
,
Sebastian
,
T.
, and
Lequesne
,
B.
,
2005
, “
Current/Voltage Based Detection of Faults in Gears Coupled to Electric Motors
,”
IEEE International Conference on Electric Machines and Drives
, pp.
1780
1787
.
17.
Knight
,
A.
, and
Bertani
,
S.
,
2005
, “
Mechanical Fault Detection in a Medium-Sized Induction Motor Using Stator Current Monitoring
,”
IEEE Trans. Energy Convers.
,
20
, pp.
753
760
.10.1109/TEC.2005.853731
18.
Eren
,
L.
, and
Devaney
,
M.
,
2003
, “
Motor Current Analysis via Wavelet Transform With Spectral Post-Processing for Bearing Fault Detection
,”
Proceedings of the 20th IEEE Instrumentation and Measurement Technology Conference
, Vol.
1
, pp.
411
414
.
19.
Chirico
,
A.
,
Kolodziej
,
J.
, and
Hall
,
L.
,
2012
, “
A Data Driven Frequency Based Feature Extraction and Classification Method for EMA Fault Detection and Isolation
,”
Proceedings of the 2012
ASME
Dynamic Systems and Control Conference, Fort Lauderdale, FL, Oct. 17–19, ASME Paper No. DSCC2012-MOVIC2012-8749, pp. 751–76010.1115/DSCC2012-MOVIC2012-8749.
20.
Chirico
,
A.
, and
Kolodziej
,
J.
,
2012
, “
Fault Detection and Isolation for Electro-Mechanical Actuators Using a Data-Driven Bayesian Classification
,”
SAE Int. J. Aerosp.
,
5
(
2
), pp.
494
502
.10.4271/2012-01-2215
21.
Chirico
,
A.
,
2012
, “
A Data Driven Frequency Based Method for Electrical-Mechanical Actuator Condition Monitoring
,” M.S. thesis, Rochester Institute of Technology, Rochester, NY.
You do not currently have access to this content.