The development and validation of a novel current-based induction motor (IM) condition monitoring (CM) system is described. The system utilizes only current and voltage signals and conducts fault detection using a combination of model-based and model-free (motor current signature analysis) fault detection methods. The residuals (or fault indicator values) generated by these methods are analyzed by a fuzzy logic diagnosis algorithm that provides a diagnosis with regard to the health of the induction motor. Specifically, this includes an indication of the health of the major induction motor subsystems, namely the stator windings, the rotor cage, the rolling element bearings, and the air-gap (eccentricity). The paper presents the overall system concept, the induction motor models, development of parameter estimation techniques, fault detection methods, and the fuzzy logic diagnosis algorithm and includes results from 110 different test cases involving four 7.5 kW four pole squirrel cage motors. The results show good performance for the four chosen faults and demonstrate the potential of the system to be used as an industrial condition monitoring tool.

References

References
1.
Boldea
,
I.
, and
Nasar
,
S. A.
,
2002
,
The Induction Machine Handbook
,
1st ed.
,
CRC Press
,
New York
.
2.
Singh
,
G.
,
2003
, “
Induction Machine Drive Condition Monitoring and Diagnostic Research—A Survey
,”
Electr. Power Syst. Res.
,
64
(
2
), pp.
145
158
.10.1016/S0378-7796(02)00172-4
3.
Thomson
,
W.
, and
Gilmore
,
R. J.
,
2003
, “
Motor Current Signature Analysis to Detect Faults in Induction Motor Drives—Fundamentals, Data Interpretation, and Industrial Case Histories
,”
Turbomachinery Symposium
.
4.
Tandon
,
N.
,
Yadava
,
G.
, and
Ramakrishna
,
K.
,
2007
, “
A Comparison of Some Condition Monitoring Techniques for the Detection of Defect in Induction Motor Ball Bearings
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
244
256
.10.1016/j.ymssp.2005.08.005
5.
Bradley
,
W. J.
,
Ebrahimi
,
M. K.
, and
Pestell
,
C.
,
2010
, “
Models of Cage Induction Motors for Current Monitoring
,”
CM 2010 and MFPT 2010: The Seventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies
.
6.
Isermann
,
R.
,
2005
, “
Model-Based Fault Detection and Diagnosis—Status and Applications
,”
Ann. Rev. Control
,
29
, pp.
71
85
.10.1016/j.arcontrol.2004.12.002
7.
Habetler
,
T. G.
,
Harley
,
R. G.
,
Tallam
,
R. M.
,
Lee
,
S.
, and
Obaid
,
R.
,
2002
, “
Complete Current-Based Induction Motor Condition Monitoring: Stator, Rotor, Bearings, and Load
,”
IEEE Power Electronics Congress
, pp.
3
8
.
8.
Rodriguez
,
P.
,
Negrea
,
M.
, and
Arkkio
,
A.
,
2005
, “
A General Scheme for Induction Motor Condition Monitoring
,”
International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Vienna, Austria
.
9.
Thomson
,
W. T.
, and
Fenger
,
M.
,
2001
, “
Current Signature Analysis to Detect Induction Motor Faults
,”
IEEE Ind. Appl. Mag.
,
7
(
4
), pp. 26–34.10.1109/2943.930988
10.
Li
,
L.
, and
Mechefske
,
C.
,
2006
, “
Induction Motor Fault Detection and Diagnosis Using Artificial Neural Networks
,”
Int. J. COMADEM
,
9
(
3
), pp. 15–23.
11.
Mohan
,
N.
,
2001
,
Advanced Electric Drives
,
MNPERE
,
Minneapolis MN, pp. 20–70
.
12.
Chen
,
S.
, and
Zivanovic
,
R.
,
2009
, “
Modeling and Simulation of Stator and Rotor Fault Conditions in Induction Machines for Testing Fault Diagnostic Techniques
,”
Eur. Trans. Electr. Power
,
20
(
5
) pp. 611–629.10.1109/TPEL.2005.846526
13.
Bellini
,
A.
,
Filippetti
,
F.
,
Franceschini
,
G.
,
Tassoni
,
C.
,
Member
,
S.
, and
Kliman
,
G. B.
,
2001
, “
Quantitative Evaluation of Induction Motor Broken Bars by Means of Electrical Signature Analysis
,”
IEEE Trans. Ind. Appl.
,
37
(
5
), pp.
1248
1255
.10.1109/28.952499
14.
Chen
,
S.
,
2008
, Induction Machine Broken Rotor Bar Diagnostics Using Prony Analysis, M.Eng.Sc. thesis, University of Adelaide, Adelaide, Australia.
15.
Santos
,
P. M.
,
Correa
,
M. B. R.
,
Jacobina
,
C. B.
, and
Silva
,
E. R. C.
,
2006
, “
A Simplified Induction Machine Model to Study Rotor Broken Bar Effects and for Detection
,”
IEEE Power Electronics Specialist Conference
, June 18–22.10.1109/PESC.2006.1712154
16.
Chang
,
X.
,
Cocquempot
, V
.
, and
Christophe
,
C.
,
2003
, “
A Model of Asynchronous Machines for Stator Fault Detection and Isolation
,”
IEEE Trans. Ind. Electron.
,
50
(
3
), pp.
578
584
.10.1109/TIE.2003.812471
17.
Nikranajbar
,
A.
,
Ebrahimi
,
M. K.
, and
Wood
,
S.
,
2010
, “
Parameter Identification of a Cage Induction Motor Using Particle Swarm Optimization
,”
Proc. Inst. Mech. Eng., Part I
,
224
(
5
), pp.
479
491
.10.1243/09596518JSCE840
18.
Blödt
,
M.
,
Granjon
,
P.
,
Raison
,
B.
, and
Rostaing
,
G.
,
2008
, “
Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring
,”
IEEE Trans. Ind. Electron.
,
55
(
4
), pp.
1813
1822
.10.1109/TIE.2008.917108
19.
Stack
,
J. R.
,
Habetler
,
T. G.
, and
Harley
,
R. G.
,
2004
, “
Fault Classification and Fault Signature Production for Rolling Element Bearings in Electric Machines
,”
IEEE Trans. Ind. Appl.
,
40
(
3
), pp.
735
739
.10.1109/DEMPED.2003.1234568
20.
Stack
,
J. R.
,
Habetler
,
T. G.
, and
Harley
,
R. G.
,
2004
, “
Bearing Fault Detection Via Autoregressive Stator Current Modeling
,”
IEEE Trans. Ind. Appl.
,
40
(
3
), pp.
740
747
.10.1109/TIA.2004.827797
You do not currently have access to this content.