This paper describes the design and control of a robotic elbow system, which is actuated with a novel sleeve muscle actuator. The sleeve muscle is a significant step forward from the traditional pneumatic muscle, and provides a substantially improved performance through a fundamental structural change. Specifically, the sleeve muscle incorporates a cylindrical insert to the center of the pneumatic muscle, which eliminates the central portion of the internal volume. As a result of this change, the sleeve muscle provides multiple advantages over the traditional pneumatic muscle, including the increased force capacity over the entire range of motion, reduced energy consumption, and expedited dynamic response. Furthermore, utilizing the load-bearing tube as the insert, the sleeve muscle enables an innovative “actuation-load bearing” structure, which generates a highly compact robotic system to mimic the structure and functionality of biological limbs. The robotic elbow design in this paper serves an example that shows the design and control process of a robotic joint in this integrated structure. This robotic elbow provides a range of motion of 110 deg, approximately 80% of that for a human elbow, and an average torque capacity that exceeds the peak torque of the human elbow. The servo control capability is provided with a model-based sliding-mode control approach, which is able to provide good control performance in the presence of disturbances and model uncertainties. This controller is implemented on the robotic elbow prototype, and the effectiveness was demonstrated with step response and sinusoidal tracking experiments.

References

References
1.
Beer
,
R. D.
,
Quinn
,
R. D.
,
Chiel
,
H. J.
, and
Ritzmann
,
R. E.
,
1997
, “
Biologically Inspired Approaches to Robotics
,”
Communications of the ACM
,
40
(
3
), pp.
31
38
.10.1145/245108.245118
2.
Sharkey
,
N. E.
,
2002
, “
Biologically Inspired Robotics
,”
Handbook of Brain Theory and Neural Networks
,
MIT Press, Cambridge, MA
.
3.
Caldwell
,
D. G.
,
Razak
,
A.
, and
Goodwin
,
M. J.
,
1993
, “
Braided Pneumatic Muscle Actuators
,”
IFAC Conference on Intelligent Autonomous Vehicles
, pp.
507
512
.
4.
Hannaford
,
B.
, and
Winters
,
J. M.
,
1990
, “
Actuator Properties and Movement Control: Biological and Technological Models
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
, pp.
101
120
,
Springer-Verlag
,
New York
.
5.
Isermann
,
R.
, and
Raab
,
U.
,
1993
, “
Intelligent Actuators—Ways to Autonomous Systems
,”
Automatica
,
29
(
5
), pp.
1315
1331
.10.1016/0005-1098(93)90052-U
6.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2002
, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Rob. Res.
,
21
(
4
), pp.
295
309
.10.1177/027836402320556331
7.
Hosoda
,
K.
,
Takuma
,
T.
, and
Nakamoto
,
A.
,
2006
, “
Design and Control of 2D Biped That Can Walk and Run With Pneumatic Artificial Muscles
,”
IEEE-RAS International Conference on Humanoid Robots
, pp.
284
289
.
8.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Bowler
,
C. J.
,
1997
, “
Investigation of Bipedal Robot Locomotion Using Pneumatic Muscle Actuators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Albuquerque, NM
, pp.
799
804
.
9.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
, and
Lefeber
,
D.
,
2006
, “
Controlling a Bipedal Walking Robot Actuated by Pleated Pneumatic Artificial Muscles
,”
Robotica
,
24
(
4
), pp.
401
410
.10.1017/S0263574705002316
10.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
,
Van Damme
,
M.
,
Berl
,
P.
,
Van der Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
,
2008
, “
A Pneumatically Powered Below-Knee Prosthesis: Design Specifications and First Experiments With an Amputee
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Arizona
, pp.
19
22
.
11.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2005
, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351122/.
12.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2009
, “
A Pneumatic Powered Knee-Ankle-Foot Orthosis (KAFO) With Myoelectric Activitation and Inhibition
,”
J. Neuroeng. Rehabil.
,
6
(
23
).10.1186/1743-0003-6-23
13.
Driver
,
T.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator: Concept and Prototype Demonstration
,”
J. Bion. Eng.
,
10
(
2
), pp.
222
230
.10.1016/S1672-6529(13)60218-8
14.
Chou
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
15.
Khalaf
,
K. A.
, and
Parnianpur
,
M.
,
2001
, “
A Normative Database of Isokinetic Upper-Extremity Joint Strengths: Towards the Evaluation of Dynamic Human Performance
,”
Biomed. Eng. Appl., Basis Commun.
,
13
, pp.
79
92
.10.4015/S101623720100011X
16.
Luttgens
,
K.
, and
Hamilton
,
N.
,
1997
,
Kinesiology: Scientific Basis of Human Motion
,
9th ed.
,
Brown and Benchmark
,
Madison, WI
.
17.
Nouri
,
A. S.
,
Gauvert
,
C.
,
Tondu
,
B.
, and
Lopez
,
P.
,
1994
, “
Generalized Variable Structure Model Reference Adaptive Control of One-Link Artificial Muscle Manipulator in Two Operating Modes
,”
Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Human, Information and Technology
, Vol.
2
, pp.
1944
1950
.
18.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Goodwin
,
M. J.
,
1995
, “
Control of Pneumatic Muscle Actuators
,”
IEEE Control Syst. Mag.
,
15
(
1
), pp.
40
48
.10.1109/37.341863
19.
Repperger
,
D. W.
,
Phillips
,
C. A.
, and
Krier
,
M.
,
1999
, “
Controller Design Involving Gain Scheduling for a Large Scale Pneumatic Muscle Actuator
,”
Proceedings of IEEE International Conference on Control Applications
, pp.
285
290
.
20.
Chan
,
S. W.
,
Lilly
,
J. H.
,
Repperger
,
D. W.
, and
Berlin
,
J. E.
,
2003
, “
Fuzzy PD+I Learning Control for a Pneumatic Muscle
,”
Proceedings of IEEE International Conference on Fuzzy Systems
, Vol.
1
, pp.
278
283
.
21.
Anh
,
H. P. H.
, and
Ahn
,
K. K.
,
2011
, “
Hybrid Control of a Pneumatic Artificial Muscle (PAM) Robot Arm Using an Inverse NARX Fuzzy Model
,”
Eng. Appl. Artif. Intell.
,
24
, pp.
697
716
.10.1016/j.engappai.2010.11.007
22.
Leephakpreeda
,
T.
,
2011
, “
Fuzzy Logic Based PWM Control and Neural Controlled-Variable Estimation of Pneumatic Artificial Muscle Actuators
,”
Expert Syst. Appl.
,
38
, pp.
7837
7850
.10.1016/j.eswa.2010.12.120
23.
Xie
,
S. Q.
, and
Jamwal
,
P. K.
,
2011
, “
An Iterative Fuzzy Controller for Pneumatic Muscle Driven Rehabilitation Robot
,”
Expert Syst. Appl.
,
38
, pp.
8128
8137
.10.1016/j.eswa.2010.12.154
24.
Thanh
,
T. D. C.
, and
Ahn
,
K. K.
,
2006
, “
Nonlinear PID Control to Improve the Control Performance of 2 Axes Pneumatic Artificial Muscle Manipulator Using Neural Network
,”
Mechatronics
,
16
, pp.
577
587
.10.1016/j.mechatronics.2006.03.011
25.
Lilly
,
J. H.
,
2003
, “
Adaptive Tracking for Pneumatic Muscle Actuator in Bicep and Tricep Configurations
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
11
(
3
), pp.
333
339
.10.1109/TNSRE.2003.816870
26.
Cai
,
D.
, and
Dai
,
Y.
,
2001
, “
A Sliding Mode Controller for Manipulator Driven by Artificial Muscle Actuator
,”
Proceedings of IEEE International Conference on Control Applications
, pp.
668
673
.
27.
Lilly
,
J. H.
, and
Yang
,
L.
,
2005
, “
Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
550
558
.10.1109/TCST.2005.847333
28.
Van Damme
,
M.
,
Vanderborght
,
B.
,
Van Ham
,
R.
,
Verrelst
,
B.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2007
, “
Proxy-Based Sliding Mode Control of a Manipulator Actuated by Pleated Pneumatic Artificial Muscles
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4355
4360
.
29.
Aschemann
,
H.
, and
Schindele
,
D.
,
2008
, “
Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
3855
3864
.10.1109/TIE.2008.2003202
30.
Jouppila
,
V.
, and
Gadsden
,
S. A.
,
2009
, “
Sliding Mode Controller and Filter Applied to a Pneumatic McKibben Muscle Actuator
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2009-13024.
31.
Shen
,
X.
,
2010
, “
Nonlinear Model-Based Control of Pneumatic Artificial Muscle Servo Systems
,”
Control Eng. Pract.
,
18
(
3
), pp.
311
317
.10.1016/j.conengprac.2009.11.010
32.
Rezoug
,
A.
,
Mahjoub
,
S.
,
Hamerlain
,
M.
, and
Tadjine
,
M.
,
2011
, “
Fuzzy Terminal Sliding Mode Controller for Robot Arm Actuated by Pneumatic Artificial Muscles
,”
8th International Multi-Conference on Systems, Signals and Devices
, pp.
1
6
.
33.
Blackburn
,
J. F.
,
Reethof
,
G.
, and
Shearer
,
J. L.
,
1960
,
Fluid Power Control
,
Technology Press of MIT
, Cambridge, MA.
34.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.