The paper investigates the optimality of the handbrake cornering, a strategy widespread among rally drivers. Nonlinear optimal control techniques are used to mimic real driver behavior. A proper yet simple cost function is devised to induce the virtual optimal driver to control the car at its physical limits while using the handbrake technique. The optimal solution is validated against experimental data by a professional rally driver performing the handbrake technique on a loose off-road surface. The effects of road surface, inertial properties, center of mass position, and friction coefficient are analyzed to highlight that the optimality of the maneuver does not depend on the particular vehicle data set used. It turns out that the handbrake maneuvering corresponds to the minimum time and minimum (lateral) space strategy on a tight hairpin corner. The results contribute to the understanding of one of the so-called aggressive driving techniques.

References

1.
Voser
,
C.
,
Hindiyeh
,
R. Y.
, and
Gerdes
,
J. C.
,
2010
, “
Analysis and Control of High Sideslip Manoeuvres
,”
Veh. Syst. Dyn.
,
48
, pp.
317
336
.10.1080/00423111003746140
2.
Abdulrahim
,
M.
,
2006
, “
On the Dynamics of Automobile Drifting
,” SAE Technical Paper No. 2006-01-1019.
3.
Velenis
,
E.
,
Katzourakis
,
D.
,
Frazzoli
,
E.
,
Tsiotras
,
P.
, and
Happee
,
R.
,
2011
, “
Steady-State Drifting Stabilization of RWD Vehicles
,”
Control Eng. Pract.
,
19
(
11
), pp.
1363
1376
.10.1016/j.conengprac.2011.07.010
4.
Velenis
,
E.
,
Tsiotras
,
P.
, and
Lu
,
J.
,
2008
, “
Optimality Properties and Driver Input Parameterization for Trail-Braking Cornering
,”
Eur. J. Control
,
14
(
4
), pp.
308
320
.10.3166/ejc.14.308-320
5.
Velenis
,
E.
,
Tsiotras
,
P.
, and
Lu
,
J.
,
2007
, “
Aggressive Maneuvers on Loose Surfaces: Data Analysis and Input Parameterization
,”
Mediterranean Conference on Control Automation
, MED’07, pp.
1
6
.
6.
Velenis
,
E.
,
2011
, “
FWD Vehicle Drifting Control: The Handbrake-Cornering Technique
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
3258
3263
.
7.
Tavernini
,
D.
,
Massaro
,
M.
,
Velenis
,
E.
,
Katzourakis
,
D.
, and
Lot
,
R.
,
2013
, “
Minimum Time Cornering: The Effect of Road Surface and Car Transmission Layout
,”
Veh. Syst. Dyn.
,
51
(
10
), pp.
1533
1547
.10.1080/00423114.2013.813557
8.
O'Neil
,
T.
,
2006
,
Rally Driving Manual
,
Team O'Neil Rally School and Car Control Center
, Dalton, OH.
9.
Pacejka
,
H. B.
,
2006
,
Tyre and Vehicle Dynamics
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
.
10.
Bertolazzi
,
E.
,
Biral
,
F.
, and
Da Lio
,
M.
,
2006
, “
Symbolic-Numeric Efficient Solution of Optimal Control Problems for Multibody Systems
,”
J. Comput. Appl. Math.
,
185
(
2
), pp.
404
421
.10.1016/j.cam.2005.03.019
11.
Massaro
,
M.
, and
Cole
,
D. J.
,
2012
, “
Neuromuscular-Steering Dynamics: Motorcycle Riders vs Car Drivers
,”
2012 ASME Dynamic Systems and Control Conference
, Fort Lauderdale, FL, Oct. 17–19,
ASME
Paper No. DSCC2012-MOVIC2012-8691, pp. 217–224.10.1115/DSCC2012-MOVIC2012-8691
12.
Cossalter
,
V.
,
Da Lio
,
M.
,
Lot
,
R.
, and
Fabbri
,
L.
,
1999
, “
A General Method for the Evaluation of Vehicle Manoeuvrability With Special Emphasis on Motorcycles
,”
Veh. Syst. Dyn.
,
31
(
2
), pp.
113
135
.10.1076/vesd.31.2.113.2094
13.
Cossalter
,
V.
,
Bobbo
,
S.
,
Massaro
,
M.
, and
Peretto
,
M.
,
2009
, “
Application of the “Optimal Maneuver Method” for Enhancing Racing Motorcycle Performance
,”
SAE
Int. J. Passeng. Cars - Mech. Syst.,
1
(
1
), pp.
1311
1318
.10.4271/2008-01-2965
14.
Casanova
,
D.
,
Sharp
,
R.
, and
Symonds
,
P.
,
2000
, “
Minimum Time Manoeuvring: The Significance of Yaw Inertia
,”
Veh. Syst. Dyn.
,
34
(
2
), pp.
77
115
.10.1076/0042-3114(200008)34:2;1-G;FT077
15.
Kelly
,
D. P.
, and
Sharp
,
R. S.
,
2010
, “
Time-Optimal Control of the Race Car: A Numerical Method to Emulate the Ideal Driver
,”
Veh. Syst. Dyn.
,
48
(
12
), pp.
1461
1474
.10.1080/00423110903514236
16.
Timings
,
J. P.
, and
Cole
,
D. J.
,
2012
, “
Vehicle Trajectory Linearisation to Enable Efficient Optimisation of the Constant Speed Racing Line
,”
Veh. Syst. Dyn.
,
50
(
6
), pp.
883
901
.10.1080/00423114.2012.671946
17.
Timings
,
J. P.
, and
Cole
,
D. J.
,
2013
, “
Minimum Maneuver Time Calculation Using Convex Optimization
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
3
), p. 031015.10.1115/1.4023400
18.
Katzourakis
,
D.
,
Velenis
,
E.
,
Abbink
,
D.
,
Happee
,
R.
, and
Holweg
,
E.
,
2012
, “
Race-Car Instrumentation for Driving Behavior Studies
,”
IEEE Trans. Instrum. Meas.
,
61
(
2
), pp.
462
474
.10.1109/TIM.2011.2164281
19.
Bryson
,
A.
,
1999
,
Dynamic Optimization
,
Addison Wesley Longman
,
Menlo Park, CA
.
20.
Gillespie
,
T. D.
,
1992
,
Fundamentals of Vehicle Dynamics
,
SAE International
, Warrendale, PA.
21.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
,
John Wiley and Sons
, New York.
22.
Allen
,
R. W.
,
Rosenthal
,
J. T.
, and
Chrstos
,
J. P.
,
1997
, “
Vehicle Dynamics Tire Model for Both Pavement and Off-Road Conditions
,”
SAE
Spec. Publ., Paper No. 970559.10.4271/970559
23.
Harnisch
,
C.
,
Lach
,
B.
,
Jakobs
,
R.
,
Troulis
,
M.
, and
Nehls
,
O.
,
2005
, “
A New Tyre-Soil Interaction Model for Vehicle Simulation on Deformable Ground
,”
Veh. Syst. Dyn.
,
43
, pp.
384
394
.10.1080/00423110500139981
24.
Senatore
,
C.
, and
Sandu
,
C.
,
2011
, “
Off-Road Tire Modeling and the Multi-Pass Effect for Vehicle Dynamics Simulation
,”
J. Terramech.
,
48
(
4
), pp.
265
276
.10.1016/j.jterra.2011.06.006
You do not currently have access to this content.