Flexible link systems are increasingly becoming popular for advantages like superior performance in micro/nanopositioning, less weight, compact design, lower power requirements, and so on. The dynamics of distributed and lumped parameter flexible link systems, especially those in vertical planes are difficult to capture with ordinary differential equations (ODEs) and pose a challenge to control. A representative case, an inverted flexible pendulum with tip mass on a cart system, is considered in this paper. A dynamic model for this system from a control perspective is developed using an Euler Lagrange formulation. The major difference between the proposed method and several previous attempts is the use of length constraint, large deformations, and tip mass considered together. The proposed dynamic equations are demonstrated to display an odd number of multiple equilibria based on nondimensional quantity dependent on tip mass. Furthermore, the equilibrium solutions thus obtained are shown to compare fairly with static solutions obtained using elastica theory. The system is demonstrated to exhibit chaotic behavior similar to that previously observed for vibrating elastic beam without tip mass. Finally, the dynamic model is validated with experimental data for a couple of cases of beam excitation.

References

References
1.
Zhiling
,
T.
,
2004
, “
Modeling and Control of Flexible Link Robots
,” M.S. thesis, National University of Singapore, Singapore.
2.
Deshmukh
,
S.
, and
Gandhi
,
P.
,
2009
, “
Optomechanical Scanning Systems for Microstereolithography (MSL): Analysis and Experimental Verification
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1275
1285
.10.1016/j.jmatprotec.2008.03.056
3.
Macchelli
,
A.
, and
Melchiorri
,
C.
,
2004
, “
Modeling and Control of the Timoshenko Beam: The Distributed Port Hamiltonian Approach
,”
SIAM J. Control Optim.
,
43
(
2
), pp.
743
767
.10.1137/S0363012903429530
4.
Voß
,
T.
,
Scherpen
,
J.
, and
Onck
,
P.
,
2008
, “
Modeling for Control of an Inflatable Space Reflector, the Nonlinear 1-D Case
,”
Proceedings of the 47th IEEE Conference on Decision and Control
,
Cancun, Mexico
, pp.
1777
1782
.
5.
Banavar
,
R.
, and
Dey
,
B.
,
2010
, “
Stabilizing a Flexible Beam on a Cart: A Distributed Port-Hamiltonian Approach
,”
J. Nonlinear Sci.
,
20
(
2
), pp.
131
151
.10.1007/s00332-009-9054-1
6.
Trivedi
,
M.
,
Banavar
,
R.
, and
Maschke
,
B.
,
2011
, “
Modeling of Hybrid Lumped-Distributed Parameter Mechanical Systems With Multiple Equilibria
,”
Proceedings of the 18th IFAC World Congress
,
Milano, Italy
.
7.
To
,
C.
,
1982
, “
Vibration of a Cantilever Beam With Base Excitation and a Tip Mass
,”
J. Sound Vib.
,
83
(
4
), pp.
445
460
.10.1016/S0022-460X(82)80100-4
8.
Esmailzadeh
,
E.
, and
Nakhaie-Jazar
,
G.
,
1998
, “
Periodic Behaviour of a Cantilever Beam With End Mass Subjected to Harmonic Base Excitation
,”
Int. J. Nonlinear Mech.
,
33
(
4
), pp.
566
577
.
9.
Tang
,
J.
, and
Ren
,
G.
,
2009
, “
Modeling and Simulation of a Flexible Inverted Pendulum System
,”
Tsinghua Sci. Technol.
,
14
(
S2
), pp.
22
26
.10.1016/S1007-0214(10)70025-0
10.
Xu
,
C.
, and
Yu
,
X.
,
2004
, “
Mathematical Modeling of the Inverted Flexible Pendulum Control System
,”
J. Control Theory Appl.
,
83
(
3
), pp.
281
282
.10.1007/s11768-004-0010-1
11.
Kong
,
K.
,
2009
, “
Fuzzy Logic PD Control of a Non-Linear Inverted Flexible Pendulum System
,” M.S. thesis, California State University, Chico, CA.
12.
Sheheitli
,
H.
, and
Rand
,
R.
,
2012
, “
On the Dynamics of a Thin Elastica
,”
Int. J. Nonlinear Mech.
,
47
, pp.
99
107
.10.1016/j.ijnonlinmec.2012.03.006
13.
Pak
,
C. H.
,
Rand
,
R. H.
, and
Moon
,
F.
,
1992
, “
Free Vibrations of a Thin Elastica by Normal Modes
,”
Nonlinear Dyn.
,
3
, pp.
347
364
.10.1007/BF00045071
14.
Cusumano
,
J.
, and
Moon
,
F.
,
1995
, “
Chaotic Non-Planar Vibrations of the Thin Elastica, Part I—Experimental Observation of Planar Instability
,”
J. Sound Vib.
,
179
(
2
), pp.
185
208
.10.1006/jsvi.1995.0013
15.
Cusumano
,
J.
, and
Moon
,
F.
,
1995
, “
Chaotic Non-Planar Vibrations of the Thin Elastica, Part II—Derivation and Analysis of a Low Dimensional Model
,”
J. Sound Vib.
,
179
(
2
), pp.
209
226
.10.1006/jsvi.1995.0014
16.
Mann
,
B.
,
2009
, “
Energy Criterion for Potential Well Escapes in a Bistable Magnetic Pendulum
,”
J. Sound Vib.
,
323
, pp.
864
876
.10.1016/j.jsv.2009.01.012
17.
Litak
,
G.
, and
Coccolo
,
M.
,
2011
, “
Nonlinear Oscillations of an Elastic Inverted Pendulum
,”
Proceedings of the 4th IEEE International Conference on Nonlinear Science and Complexity
, Budapest, Hungary, Aug. 6–11.
18.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
19.
Laura
,
P.
,
Pombo
,
J.
, and
Susemihl
,
E.
,
1974
, “
A Note on the Vibrations of a Clamped Free Beam With a Mass at the Free End
,”
J. Sound Vib.
,
37
(
2
), pp.
161
168
.10.1016/S0022-460X(74)80325-1
20.
Lanczos
,
C.
,
1952
,
The Variational Principles of Mechanics. Mathematical Expositions
, No. 4,
University of Toronto Press
,
Toronto
.
21.
Borg
,
S.
,
1961
,
Fundamentals of Engineering Elasticity
,
D. Van Nostrand Company
, Princeton, NJ.
22.
Gere
,
J.
,
2004
,
Mechanics of Materials
,
5th ed.
,
Thomson Asia
,
Singapore
.
23.
Lepik
,
U.
,
1995
, “
Elastic Plastic Vibrations of a Buckled Beam
,”
Int. J. Nonlinear Mech.
,
30
(
2
), pp.
129
139
.10.1016/0020-7462(94)00035-9
You do not currently have access to this content.