The next generation of aircraft will face more challenging demands in both electrical and thermal loads. The larger thermal loads reduce the propulsion system efficiency by demanding bleed air from the main engine compressor or imposing a shaft load on the high or low pressure shaft. The approach adopted to power the thermal management system influences the overall fuel burn of the aircraft for a given mission. To assess these demands and to explore conceptual designs for the electrical and thermal management system, a dynamic vehicle level tip-to-tail (T2T) model has been developed. The T2T model captures and quantifies the energy exchanges throughout the aircraft. The following subsystems of the aircraft are simulated in the T2T model: air vehicle system, propulsion system, adaptive power thermal management system, fuel thermal management system, electrical system, and actuator system. This paper presents trade studies evaluating the impact of various approaches in power take-off from the main engine and approaches in control strategy. The trade studies identify different control strategies resulting in significant fuel savings for a given mission profile.

References

References
1.
Wells
,
J. R.
,
Amrhein
,
M.
,
Walters
,
E. A.
,
Iden
,
S. M.
,
Page
,
A. M.
,
Lamm
,
P. L.
, and
Matasso
,
A. F.
,
2008
, “
Electrical Accumulator Unit for the Energy Optimized Aircraft
,”
SAE Int. J. Aerosp.
,
1
(
1
), pp.
1071
1077
.
2.
Alonso
,
J. J.
,
LeGresley
,
P.
, and
Pereyra
,
V.
,
2009
, “
Aircraft Design Optimization
,”
Math. Comput. Simul.
,
79
(
6
), pp.
1948
1958
.10.1016/j.matcom.2007.07.001
3.
Garcia
,
E.
,
Maser
,
A. C.
,
Mavris
,
D. N.
, and
Miller
,
C.
,
2012
, “
INVENT Surrogate Modeling and Optimization of Transient Thermal Responses
,”
50th AIAA Aerospace Sciences Meeting, AIAA
.
4.
Doty
,
J.
,
Bash
,
M.
,
Zumberge
,
J.
, and
Wu
,
T.
,
2012
, “
Development of Surrogate Models for an Aircraft Synchronous Generator
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA
.
5.
Vargas
,
J. V. C.
, and
Bejan
,
A.
,
2001
, “
Thermodynamic Optimization of Finned Crossflow Heat Exchangers for Aircraft Environmental Control Systems
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
657
665
.10.1016/S0142-727X(01)00129-1
6.
Pérez-Grande
,
I.
, and
Leo
,
T. J.
,
2002
, “
Optimization of a Commercial Aircraft Environmental Control System
,”
Appl. Therm. Eng.
,
22
(
17
), pp.
1885
1904
.10.1016/S1359-4311(02)00130-8
7.
Tu
,
Y.
, and
Lin
,
G. P.
,
2011
, “
Dynamic Simulation of Aircraft Environmental Control System Based on Flowmaster
,”
J. Aircr.
,
48
(
6
), pp.
2031
2041
.10.2514/1.C031433
8.
Eichler
,
J.
,
1975
, “
Simulation Study of an Aircraft's Environmental Control System Dynamic Response
,”
J. Aircr.
,
12
(
10
), pp.
757
758
.10.2514/3.59867
9.
Cao
,
Y.
,
Jin
,
X.
,
Meng
,
G.
, and
Fletcher
,
J.
,
2005
, “
Computational Modular Model Library of Gas Turbine
,”
Adv. Eng. Software
,
36
(
2
), pp.
127
134
.10.1016/j.advengsoft.2004.07.006
10.
Spakovsky
,
M. R. V.
,
2012
, “
Integrated Mission-Level Analyses and Optimizations
,”
Physics-Based Modeling & Simulation for Aerospace Systems
, VKI,
Wright State University
,
Dayton, OH
.
11.
Weise
,
P.
,
Gvozdich
,
G.
, and
Spakovsky
,
M. R. V.
,
2012
, “
INVENT: Mission-Integrated Optimization of a Tip-to-Tail High Performance Aircraft System
,”
50th AIAA Aerospace Sciences Meeting
, Nashville, TN.
12.
Wolff
,
M.
,
McCarthy
,
K.
,
Russell
,
G.
,
Zumberge
,
J.
,
Bodie
,
M.
, and
Lucas
,
E.
,
2010
, “
Thermal Analysis of an Integrated Aircraft Model
,”
48th AIAA Aerospace Sciences Meeting, AIAA
, Orlando, FL.
13.
Serrao
,
L.
,
Rizzoni
,
G.
, and
Onori
,
S.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031012
.10.1115/1.4003267
14.
Kum
,
D.
,
Peng
,
H.
, and
Bucknor
,
N. K.
,
2011
, “
Supervisory Control of Parallel Hybrid Electric Vehicles for Fuel and Emission Reduction
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
061010
.10.1115/1.4002708
15.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.10.1109/TCST.2003.815606
16.
Sciarretta
,
A.
,
Back
,
M.
, and
Guzzella
,
L.
,
2004
, “
Optimal Control of Parallel Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
352
363
.10.1109/TCST.2004.824312
17.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2011
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.10.1109/TCST.2010.2061232
18.
Pei
,
D.
, and
Leamy
,
M. J.
,
2013
, “
Dynamic Programming-Informed Equivalent Cost Minimization Control Strategies for Hybrid-Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
051013
.10.1115/1.4024788
19.
Wei
,
X.
,
Guzzella
,
L.
,
Utkin
,
V. I.
, and
Rizzoni
,
G.
,
2006
, “
Model-Based Fuel Optimal Control of Hybrid Electric Vehicle Using Variable Structure Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
1
), pp.
13
19
.10.1115/1.2397148
20.
Zhang
,
H.
,
Shi
,
Y.
, and
Wang
,
J.
,
2013
, “
Observer-Based Tracking Controller Design for Networked Predictive Control Systems With Uncertain Markov Delays
,”
Int. J. Control
,
86
(
10
), pp.
1824
1836
.10.1080/00207179.2013.797107
21.
Zhang
,
H.
,
Shi
,
Y.
, and
Liu
,
M.
,
2013
, “
H∞ Step Tracking Control for Networked Discrete-Time Nonlinear Systems With Integral and Predictive Actions
,”
IEEE Trans. Ind. Inf.
,
9
(
1
), pp.
337
345
.10.1109/TII.2012.2225434
22.
Zhang
,
H.
,
Shi
,
Y.
, and
Mehr
,
A. S.
,
2011
, “
Robust Static Output Feedback Control and Remote PID Design for Networked Motor Systems
,”
IEEE Trans. Ind. Electron.
,
58
(
12
), pp.
5396
5405
.10.1109/TIE.2011.2107720
23.
Roberts
,
R. A.
,
Eastbourn
,
S. M.
, and
Maser
,
A. C.
,
2011
, “
Generic Aircraft Thermal Tip-to-Tail Modeling and Simulation
,”
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, AIAA.
24.
Eastbourn
,
S. M.
, and
Roberts
,
R. A.
,
2011
, “
Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink
,”
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, AIAA, San Diego, CA.
25.
Eastbourn
,
S. M.
,
2012
,
Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink
,
Wright State University
,
Dayton, OH
.
26.
Weise
,
P.
,
Gvozdich
,
G.
, and
Spakovsky
,
M. R. V.
,
2012
, “
INVENT: Study of the Issues Involved in Integrating a Directed Energy Weapons Subsystem Into a High Performance Aircraft System
,”
50th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics
.
27.
Incropera
,
F.
, and
DeWitt
,
D. P.
,
2000
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons, Inc.
,
New York
.
28.
Weise
,
P.
,
2012
,
Mission-Integrated Synthesis/Design of High-Performance Aerospace Systems Under Transient Conditions
,
Virginia Tech
,
Blacksburg, VA
.
You do not currently have access to this content.