Pneumatic artificial muscles (PAMs) are comprised of an elastomeric bladder surrounded by a braided mesh sleeve. When the bladder is inflated, the actuator may either contract or extend axially, with the direction of motion dependent on the orientation of the fibers in the braided sleeve. Contractile PAMs have excellent actuation characteristics, including high specific power, specific work, and power density. Unfortunately, extensile PAMs exhibit much reduced blocked force, and are prone to buckling under axial compressive loading. For applications in which extensile motion and compressive force are desired, the push-PAM actuator introduced here exploits the operational characteristics of a contractile PAM, but changes the direction of motion and force by employing a simple internal mechanism using no gears or pulleys. Quasi-static behavior of the push-PAM was compared to a contractile PAM for a range of operating pressures. Based on these data, the push-PAM actuator can achieve force and stroke comparable to a contractile PAM tested under the same conditions.

References

References
1.
Caldwell
,
D.
,
Tsagarakis
,
N.
, and
Medrano-Cerda
,
G. A.
,
2000
, “
Bio-mimetic Actuators: Polymeric Pseudo Muscular Actuators and Pneumatic Muscle Actuators for Biological Emulation
,”
Mechatronics
,
10
(
4–5
), pp.
499
530
.10.1016/S0957-4158(99)00071-9
2.
Robinson
,
R. M.
,
Kothera
,
C. S.
,
Woods
,
B. K. S.
,
Vocke
,
R. D.
, III
, and
Wereley
,
N. M.
,
2011
, “
High Specific Power Actuators for Robotic Manipulators
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1501
1511
.10.1177/1045389X11417653
3.
Woods
,
B. K. S.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2011
, “
Wind Tunnel Testing of a Helicopter Rotor Trailing Edge Flap Actuated via Pneumatic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1513
1528
.10.1177/1045389X11424216
4.
Vocke
,
R. D.
, III
,
Kothera
,
C. S.
,
Chaudhuri
,
A.
,
Woods
,
B. K. S.
, and
Wereley
,
N. M.
,
2012
, “
Design and Testing of a High-specific Work Actuator Using Miniature Pneumatic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
365
378
.10.1177/1045389X11431743
5.
Woods
,
B. K. S.
,
Gentry
,
M. F.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2011
, “
Fatigue Life Testing of Swaged Pneumatic Artificial Muscles as Actuators for Aerospace Applications
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
327
343
.10.1177/1045389X11433495
6.
Chen
,
Y.
,
Yin
,
W.
,
Liu
,
Y.
, and
Leng
,
J.
,
2011
, “
Structural Design and Analysis of Morphing Skin Embedded with Pneumatic Muscle Fibers
,”
Smart Mater. Struct.
,
20
, p.
085033
.10.1088/0964-1726/20/8/085033
7.
Philen
,
M. K.
,
2009
, “
On the Applicability of Fluidic Flexible Matrix Composite Variable Impedance Materials for Prosthetic and Orthotic Devices
,”
Smart Mater. Struct.
,
18
, p.
104023
.10.1088/0964-1726/18/10/104023
8.
Trivedi
,
D.
, and
Rahn
,
C. D.
,
2012
, “
Soft Robotic Manipulators: Design, Analysis, and Control
,”
Plants and Mechanical Motion: A Synthetic Approach to Nastic Materials and Structures
,
N. M.
Wereley
and
J. M.
Sater
, eds.,
DEStech Publications, Inc.
,
Lancaster, PA
, pp.
141
165
.
9.
Davis
,
S.
, and
Caldwell
,
D.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Robot. Res.
,
25
(
4
), pp.
359
369
.10.1177/0278364906063227
10.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
, p.
091010
.10.1115/1.3158982
11.
De Volder
,
M.
,
Moers
,
A. J. M.
, and
Reynaerts
,
D.
,
2011
, “
Fabrication and Control of Miniature McKibben Actuators
,”
Sens. Actuat. A
,
166
(
1
), pp.
111
116
.10.1016/j.sna.2011.01.002
12.
Solano
,
B.
, and
Rotinat-Libersa
,
C.
,
2011
, “
Compact and Lightweight Hydraulic Actuation System for High Performance Millimeter Scale Robotic Applications: Modeling and Experiments
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1479
1487
.10.1177/1045389X11418860
13.
Hocking
,
E. G.
, and
Wereley
,
N. M.
,
2013
, “
Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
22
(
1
), p.
014016
.10.1088/0964-1726/22/1/014016
14.
Zhang
,
Z.
, and
Philen
,
M. K.
,
2011
, “
Review: Pressurized Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
255
268
.10.1177/1045389X11420592
15.
Tondu
,
B.
,
2012
, “
Modelling of the McKibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
.10.1177/1045389X11435435
16.
Philen
,
M. K.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K. W.
,
Rahn
,
C. D.
,
Zydney
,
A. L.
, and
Bakis
,
C. E.
,
2007
, “
Fibrillar Network Adaptive Structure with Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.10.1177/1045389X06066097tions
17.
Zhu
,
B.
,
Rahn
,
C. D.
, and
Bakis
,
C. E.
,
2011
, “
Actuation of Fluidic Flexible Matrix Composites in Structural Media
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
269
278
.10.1177/1045389X11428676
18.
Woods
,
B. K. S.
,
Wereley
,
N. M.
,
Kothera
,
C. S.
, and
Boyer
,
S. M.
,
2012
, “
Extensile Fluidic Muscle Actuator
,” U.S. Patent Pending. Application No. 12/955,242.
19.
Gelb
,
A.
, and
Vander Velde
,
W. E.
,
1968
,
Multiple-input Describing Functions and Nonlinear System Design
,
McGraw-Hill
,
New York
, pp.
4
5
.
You do not currently have access to this content.