This paper proposes a multistage suboptimal model predictive control (MPC) strategy which can reduce the prediction horizon without compromising the stability property. The proposed multistage MPC requires a precomputed sequence of j-step admissible sets, where the j-step admissible set is the set of system states that can be steered to the maximum positively invariant set in j control steps. Given the precomputed admissible sets, multistage MPC first determines the minimum number of steps M required to drive the state to the terminal set. Then, it steers the state to the (MN)-step admissible set if M > N, or to the terminal set otherwise. The paper presents the offline computation of the admissible sets, and shows the feasibility and stability of multistage MPC for systems with and without disturbances. A numerical example illustrates that multistage MPC with N = 5 can be used to stabilize a system which requires MPC with N ≥ 14 in the absence of disturbances, and requires MPC with N ≥ 22 when affected by disturbances.

References

References
1.
Farina
,
M.
, and
Scattolini
,
R.
,
2012
, “
Tube-Based Robust Sampled-Data MPC for Linear Continuous-Time Systems
,”
Automatica
,
48
(
7
), pp.
1473
1476
.10.1016/j.automatica.2012.03.026
2.
Chen
,
H.
, and
Allgöwer
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.10.1016/S0005-1098(98)00073-9
3.
Nevistic
,
V.
, and
Primbs
,
J. A.
,
1997
, “
Finite Receding Horizon Linear Quadratic Control: A Unifying Theory for Stability and Performance Analysis
,” California Institute of Technology, Pasadena, CA, Technical Report.
4.
Primbs
,
J. A.
, and
Nevistic
,
V.
,
1997
, “
Constrained Finite Receding Horizon Linear Quadratic Control
,” California Institute of Technology, Pasadena, CA, Technical Report.
5.
Bitmead
,
R. R.
,
Gevers
,
M.
, and
Wertz
,
V.
,
1990
,
Adaptive Optimal Control—The Thinking Man's GPC
,
Prentice-Hall
,
New York
.
6.
Scokaert
,
P. O. M.
, and
Rawlings
,
J. B.
,
1998
, “
Constrained Linear Quadratic Regulation
,”
IEEE Trans. Autom. Control
,
43
(
8
), pp.
1163
1169
.10.1109/9.704994
7.
Scokaert
,
P. O. M.
,
Mayne
,
D. Q.
, and
Rawlings
,
J. B.
,
1999
, “
Suboptimal Model Predictive Control (Feasibility Implies Stability)
,”
IEEE Trans. Autom. Control
,
44
(
3
), pp.
648
654
.10.1109/9.751369
8.
de Oliver
,
S. L.
, and
Morari
,
M.
,
2000
, “
Contractive Model Predictive Control for Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
6
), pp.
1053
1071
.10.1109/9.863592
9.
Cheng
,
X.
, and
Krogh
,
B. H.
,
2001
, “
Stability-Constrained Model Predictive Control
,”
IEEE Trans. Autom. Control
,
46
(
11
), pp.
1816
1820
.10.1109/9.964698
10.
Mayne
,
D. Q.
, and
Michalska
,
H.
,
1990
, “
Receding Horizon Control of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
35
(
7
), pp.
814
824
.10.1109/9.57020
11.
Michalska
,
H.
, and
Mayne
,
D. Q.
,
1993
, “
Robust Receding Horizon Control of Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
38
(
11
), pp.
1623
1633
.10.1109/9.262032
12.
Mayne
,
D. Q.
, and
Langson
,
W.
,
2001
, “
Robustifying Model Predictive Control of Constrained Linear Systems
,”
Electron. Lett.
,
37
(
23
), pp.
1422
1423
.10.1049/el:20010951
13.
Mayne
,
D. Q.
,
Seron
,
M. M.
, and
Raković
,
S. V.
,
2005
, “
Robust Model Predictive Control of Constrained Linear Systems With Bounded Disturbances
,”
Automatica
,
41
(
2
), pp.
219
224
.10.1016/j.automatica.2004.08.019
14.
Langson
,
W.
,
Chryssochoos
,
I.
,
Raković
,
S. V.
, and
Mayne
,
D. Q.
,
2004
, “
Robust Model Predictive Control Using Tubes
,”
Automatica
,
40
(
1
), pp.
125
133
.10.1016/j.automatica.2003.08.009
15.
Raković
,
S. V.
,
Kouvaritakis
,
B.
,
Cannon
,
M.
,
Panos
,
C.
, and
Findeisen
,
R.
,
2012
, “
Parameterized Tube Model Predictive Control
,”
IEEE Trans. Autom. Control
,
57
(
11
), pp.
2746
2761
.10.1109/TAC.2012.2191174
16.
Scokaert
,
P. O. M.
, and
Mayne
,
D. Q.
,
1998
, “
Min-Max Feedback Model Predictive Control for Constrained Linear Systems
,”
IEEE Trans. Autom. Control
,
43
(
8
), pp.
1136
1142
.10.1109/9.704989
17.
Kerrigan
,
E. C.
, and
Maciejowski
,
J. M.
,
2004
, “
Feedback Min-Max Model Predictive Control Using a Single Linear Program: Robust Stability and the Explicit Solution
,”
Int. J. Robust Nonlinear Control
,
14
(
4
), pp.
395
413
.10.1002/rnc.889
18.
Kwakernaak
,
H.
, and
Sivan
,
R.
,
1972
,
Linear Optimal Control Systems
,
Wiley
,
New York
.
19.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
20.
Kolmanovsky
,
I.
, and
Gilbert
,
E. G.
,
1998
, “
Theory and Computation of Disturbance Invariant Sets for Discrete-Time Linear Systems
,”
Math. Probl. Eng.
,
4
, pp.
317
367
.10.1155/S1024123X98000866
21.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
22.
Raković
,
S. V.
,
Kerrigan
,
E. C.
,
Kouramas
,
K. I.
, and
Mayne
,
D. Q.
,
2005
, “
Invariant Approximations of Minimal Robust Positively Invariant Set
,”
IEEE Trans. Autom. Control
,
50
(
3
), pp.
406
410
.10.1109/TAC.2005.843854
23.
Keerthi
,
S. S.
, and
Gilbert
,
E. G.
,
1987
, “
Computation of Minimum-Time Feedback Control Laws for Discrete Time Systems With State-Control Constraints
,”
IEEE Trans. Autom. Control
,
AC-32
(
5
), pp.
432
435
.10.1109/TAC.1987.1104625
24.
Lopez
,
M. A.
, and
Reisner
,
S.
,
2005
, “
Hausdorff Approximation of Convex Polygons
,”
Comput. Geom. Theory Appl.
,
32
, pp.
139
158
.10.1016/j.comgeo.2005.02.002
25.
Lopez
,
M. A.
, and
Reisner
,
S.
,
2002
, “
Linear Time Approximation of 3D Convex Polytopes
,”
Comput. Geom. Theory Appl.
,
23
, pp.
291
301
.10.1016/S0925-7721(02)00100-1
26.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University
, Press, Cambridge, UK.
27.
Izadi
,
H. A.
,
Gordon
,
B. W.
, and
Zhang
,
Y.
,
2009
, “
Decentralized Receding Horizon Control for Cooperative Multiple Vehicles Subject to Communication Delay
,”
J. Guid., Control, Dyn.
,
32
(
6
), pp.
1956
1965
.10.2514/1.43337
You do not currently have access to this content.