In this paper, a novel active control of fluid pressure pulsation (ACFPP) is proposed, which meets the need of the high-pressure and high-speed hydraulic pipe system. A piezoelectric direct-drive slide valve (PDDSV) is designed and used as the active vibration absorber. Two ports of the PDDSV both connect to a bypass near the pump outlet and the other two ports both connect to the oil tank. By the bilateral-overflow through the shoulder of the PDDSV, the overflow wave generated in one cycle of spool motion can cancel two cycles of flow ripple. An adaptive-optimum control method based on the rotate-vector optimization method (RVOM) is adopted to adjust the control parameters in order to minimize the amplitude of the pressure pulsation. The biggest advantage of the proposed ACFPP is that it can eliminate the pressure pulsation when PDDSV only works at half of the pressure pulsation's frequency. The simulation and experimentation both verify the proposed ACFPP. By the proposed ACFPP, the suppression for the single-frequency component and dual-frequency components of the pressure pulsation have been both realized.

References

References
1.
Manring
,
N. D.
, and
Zhang
,
Y.
,
2001
, “
The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design
,”
ASME J. Dyn. Syst. Meas. Control
,
123
, pp.
479
487
.10.1115/1.1389311
2.
Harrison
,
K.
, and
Edge
,
K. A.
,
2000
, “
Reduction of Axial Piston Pump Pressure Ripple
,”
Proc. IMechE, Part I: J. Syst. Control Eng.
,
214
, pp.
53
64
.10.1243/0959651001540519
3.
Cheah
,
S.
,
1993
, “
Design Considerations of Aircraft Piping System
,”
Proceeding of the Aerospace Technological Seminar
, Singapore, pp.
51
66
.
4.
Ouyang
,
P.
,
Jiao
,
Z.
,
Liu
,
H.
,
Li
,
S.
, and
Li
,
Y.
,
2006
, “
Active Control on Fluid Borne Pulsation Using Piezoelectric Valve as Absorber
,”
IEEE Conference on Robotics, Automation and Mechatronics
, Bangkok, pp.
1
5
.
5.
Kim
,
K. H.
,
Jang
,
J. S.
,
Jung
,
D. S.
, and
Kim
,
H. E.
,
2005
, “
Reduction of Pressure Ripples Using a Parallel Line in Hydraulic Pipeline
,”
Int. J. Autom. Technol.
,
6
(
1
), pp.
65
70
.
6.
Kojima
,
E.
, and
Ichiyanagi
,
T.
,
1998
, “
Development Research of New Types of Multiple Volume Resonators
,”
Bath Workshop on Power Transmission and Motion Control
, pp.
193
206
.
7.
Strunk
,
R. D.
,
1991
, “
Silencer for Hydraulic Piston Pump Pressure Pulsations
,”
Soc. Autom. Eng.
,
100
, pp.
135
141
.
8.
Jiao
,
Z.
,
Chen
,
P.
,
Hua
,
Q.
, and
Wang
,
S.
,
2003
, “
Adaptive Vibration Active Control of Fluid Pressure Pulsations
,”
Proc. IMechE, Part I: J. Syst. Control Eng.
,
217
, pp.
311
318
.10.1177/095965180321700407
9.
Harper
,
M.
, and
Leung
,
R.
,
1993
, “
Active Vibration Control in Pipes
,”
Proceedings on Inter-Noise
, Leuven, pp.
871
874
.
10.
Brennan
,
M.
,
Elliott
,
S.
, and
Pinnington
,
R.
,
1996
, “
A Non-Intrusive Fluid-Wave Actuator and Sensor Pair for the Active Control of Fluid-Borne Vibrations in a Pipe
,”
Smart Mater. Struct.
,
5
, pp.
281
296
.10.1088/0964-1726/5/3/006
11.
Maillard
,
J.
,
Lagö
,
T. L.
,
Winberg
,
M.
, and
Fuller
,
C.
,
1999
, “
Fluid Wave Actuator for the Active Control of Hydraulic Pulsations in Piping Systems
,”
Proc. Int. Modal Anal. Exhib.
,
6
, pp.
1806
1812
. Available at: http://sem-proceedings.com/17i/sem.org-IMAC-XVII-17th-174302-FluidWave-Actuator-Active-Control-Hydraulic-Pulsations-Piping-Systems.pdf
12.
Kiyar
,
M. B.
,
Johnson
,
M.
, and
Fuller
,
C.
,
2002
, “
Experiments on the Active Control of Multiple Wave Types in Fluid Filled Piping Systems
,”
ASME International Mechanical Engineering Congress and Exposition
, New Orleans, Paper No. IMECE2002-33041.
13.
Kojima
,
E.
, and
Shinada
,
M.
,
1991
, “
Development of an Active Attenuator for Pressure Pulsation in Liquid Piping Systems: A Real Time-Measuring Method of Progressive Wave in a Pipe
,”
JSME Int. J., Ser. B
,
34
, pp.
466
473
. Available at: http://ci.nii.ac.jp/naid/110002493413/
14.
Yokota
,
S.
,
Somada
,
H.
, and
Yamaguchi
,
H.
,
1996
, “
Study on an Active Accumulator (Active Control of High-Frequency Pulsation of Flow Rate in Hydraulic Systems)
,”
JSME Int. J., Ser. B
,
39
, pp.
119
124
.10.1299/jsmeb.39.119
15.
Kartha
,
S. C.
,
2000
, “
Active, Passive and Active/Passive Control Techniques for Reduction of Vibrational Power Flow in Fluid Filled Pipes
,” Master dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
16.
Manring
,
N. D.
,
2000
, “
The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
122
, pp.
263
268
.10.1115/1.482452
17.
Duan
,
J.
,
Li
,
M. F.
, and
Lim
,
T. C.
,
2011
, “
Active Control of Vehicle Transient Powertrain Noise Using a Twin-FXLMS Algorithm
,”
ASME J. Dyn. Syst. Meas. Control
,
133
, p.
034501
.10.1115/1.4003386
18.
Yoon
,
H.
,
Bateman
,
B. E.
, and
Agrawal
,
B. N.
,
2011
, “
Laser Beam Jitter Control Using Recursive-Least-Squares Adaptive Filters
,”
ASME J. Dyn. Syst. Meas. Control
,
133
, p.
041001
.10.1115/1.4003372
19.
Scribner
,
K. B.
,
Sievers
,
L. A.
, and
von Flotow
,
A. H.
,
1993
, “
Active Narrowband Vibration Isolation of Machinery Noise From Resonant Substructures
,’’
J. Sound Vib.
,
167
(
1
), pp.
17
40
.10.1006/jsvi.1993.1319
20.
Guan
,
Y. H.
,
Shepard
,
W. S.
, and
Lim
,
T. C.
,
2003
, “
Direct Hybrid Adaptive Control of Gear Pair Vibration
,”
ASME J. Dyn. Syst. Meas. Control
,
125
, pp.
585
594
.10.1115/1.1636771
21.
Lee
,
C.-H.
, and
Jee
,
W.-H.
,
1996
, “
H∞ Robust Control of Flexible Beam Vibration by Using a Hybrid Damper
,”
ASME J. Dyn. Syst. Meas. Control
,
118
, pp.
643
648
.10.1115/1.2801196
22.
Schoen
,
M. P.
,
Hoover
,
R. C.
,
Chinvorarat
,
S.
, and
Schoen
,
G. M.
,
2009
, “
System Identification and Robust Controller Design Using Genetic Algorithms for Flexible Space Structures
,”
ASME J. Dyn. Syst. Meas. Control
,
131
, p.
031003
.10.1115/1.3072106
23.
Yazici
,
H.
,
Guclu
,
R.
,
Kucukdemiral
,
I. B.
, and
Parlakci
,
M. N. A.
,
2012
, “
Robust Delay-Dependent H∞ Control for Uncertain Structural Systems With Actuator Delay
,”
ASME J. Dyn. Syst. Meas. Control
,
134
, p.
031013
.10.1115/1.4005500
24.
Shoureshi
,
R.
,
Brackney
,
L.
,
Kubota
,
N.
, and
Batta
,
G.
,
1993
, “
A Modern Control Approach to Active Noise Control
,”
ASME J. Dyn. Syst. Meas. Control
,
115
, pp.
673
678
.10.1115/1.2899195
25.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
, pp.
97
105
.10.1115/1.3447224
26.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1967
,
Hydraulic Transients
,
McGraw-Hill
,
New York
.
27.
Johnston
,
D.
, and
Edge
,
K.
,
1991
, “
The Impedance Characteristics of Fluid Power Components: Restrictor and Flow Control Valves
,”
Proc. IMechE, Part I: J. Sys. Control Eng.
,
205
, pp.
3
10
.10.1243/PIME_PROC_1991_205_084_02
28.
Meeker
,
T.
,
1996
, “
ANSI/IEEE Standard on Piezoelectricity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
, pp.
717
772
.10.1109/TUFFC.1996.535477
29.
Jalili
,
N.
,
Wagner
,
J.
, and
Dadfarnia
,
M.
,
2003
, “
A Piezoelectric Driven Ratchet Actuator Mechanism With Application to Automotive Engine Valves
,”
Mechatronics
,
13
, pp.
933
956
.10.1016/S0957-4158(03)00009-6
30.
Arafa
,
H.
, and
Rizk
,
M.
,
1987
, “
Spool Hydraulic Stiffness and Flow Force Effects in Electrohydraulic Servo-Valves
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
201
, pp.
193
199
.10.1243/PIME_PROC_1987_201_106_02
31.
Physik Instrumente,
2009
,
PI Catalog V2: Piezo Drivers/Servo Controllers, Karlsruhe, Germany
.
32.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
John Wiley & Sons Inc
,
New York
.
33.
Jiao
,
Z.
, and
Lu
,
Y.
,
1996
, “
A Novel Engineering Optimization Method: Rotate Vector Method
,”
Chin. J. Mech. Eng.
,
32
, pp.
45
50
.
You do not currently have access to this content.