This paper is concerned with mean-square stabilization of single-input Markovian jump linear systems (MJLSs) with logarithmically quantized state feedback. We introduce the concepts and provide explicit constructions of stabilizing mode-dependent logarithmic quantizers together with associated controllers, and a semi-convex way to determine the optimal (coarsest) stabilizing quantization density. An example application is presented as a special case of the developed framework, that of feedback stabilizing a linear time-invariant (LTI) system over a log-quantized erasure channel. A hardware implementation of this application on an inverted pendulum testbed is provided using a finite word-length approximation.

References

References
1.
Ji
,
Y.
,
Chizeck
,
H. J.
,
Feng
,
X.
, and
Loparo
,
K. A.
,
1991
, “
Stability and Control of Discrete-Time Jump Linear Systems
,”
Control Theory Adv. Technol.
,
7
(
2
), pp.
247
270
.
2.
Ji
,
Y.
, and
Chizeck
,
H. J.
,
1990
, “
Controllability, Stabilizability, and Continuous-Time Markovian Jump Linear Quadratic Control
,”
IEEE Trans. Autom. Control
,
35
(
7
), pp.
777
788
.10.1109/9.57016
3.
Costa
,
O. L. V.
, and
Fragoso
,
M. D.
,
1993
, “
Stability Results for Discrete-Time Linear Systems With Markovian Jumping Parameters
,”
J. Math. Anal. Appl.
,
179
, pp.
154
178
.10.1006/jmaa.1993.1341
4.
Costa
,
O. L. V.
,
Fragoso
,
M. D.
, and
Marques
,
R. P.
,
2005
,
Discrete-Time Markov Jump Linear Systems
,
Springer
,
London
.
5.
Elia
,
N.
, and
Mitter
,
S.
,
2001
, “
Stabilization of Linear Systems with Limited Information
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1384
1400
.10.1109/9.948466
6.
Zhang
,
C.
,
2008
, “
Centralized and Decentralized Control With Limited Information
,” Ph.D., dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.
7.
Tsumura
,
K.
,
Ishii
,
H.
, and
Hoshina
,
H.
,
2009
, “
Tradeoffs Between Quantization and Packet Loss in Networked Control of Linear Systems
,”
Automatica
,
45
, pp.
2963
2970
.10.1016/j.automatica.2009.09.030
8.
Zhang
,
C.
,
Chen
,
K.
, and
Dullerud
,
G. E.
,
2009
, “
Stabilization of Markovian Jump Linear Systems With Limited Information: A Convex Approach
,”
Proceeding of IEEE American Control Conference
, New York.
9.
Liberzon
,
D.
,
2003
, “
On Stabilization of Linear Systems With Limited Information
,”
IEEE Trans. Autom. Control
,
48
(
2
), pp.
304
307
.10.1109/TAC.2002.808487
10.
Tatikonda
,
S.
, and
Mitter
,
S. K.
,
2004
, “
Control Under Communication Constraints
,”
IEEE Trans. Autom. Control
,
49
(
7
), pp.
1056
1068
.10.1109/TAC.2004.831187
11.
Yuksel
,
S.
, and
Başar
,
T.
,
2006
, “
On the Absence of Rate Loss in Decentralized Sensor and Controller Structure for Asymptotic Stability
,”
Proceeding of IEEE American Control Conference
, pp.
5562
5567
.
12.
Nair
,
G. N.
, and
Evans
,
R. J.
,
2000
, “
Stabilization With Data-Rate-Limited Feedback: Tightest Attainable Bounds
,”
Syst. Control Lett.
,
41
, pp.
49
76
.10.1016/S0167-6911(00)00037-2
13.
Fu
,
M.
, and
Xie
,
L.
,
2005
, “
The Sector Bound Approach to Quantized Feedback Control
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1698
1710
.10.1109/TAC.2005.858689
14.
Nair
,
G. N.
, and
Evans
,
R. J.
,
2002
, “
Mean Square Stabilizability of Stochastic Linear Systems With Data Rate Constraints
,”
Proceeding of 41st IEEE Conference on Decision and Control
, pp.
1632
1637
.
15.
Nesic
,
D.
, and
Liberzon
,
D.
,
2009
, “
A Unified Framework for Design and Analysis of Networked and Quantized Control Systems
,”
IEEE Trans. Autom. Control
,
54
(
4
), pp.
732
747
.10.1109/TAC.2009.2014930
16.
Li
,
T.
,
Fu
,
M.
,
Xie
,
L.
, and
Zhang
,
J.
,
2011
, “
Distributed Consensus With Limited Communication Data Rate
,”
IEEE Trans. Autom. Control
,
56
(
2
), pp.
279
292
.10.1109/TAC.2010.2052384
17.
Elia
,
N.
,
2000
, “
Design of Hybrid Systems With Guaranteed Performance
,”
Proceeding of 39th IEEE Conference on Decision and Control
, pp.
1117
1122
.
18.
Sinopoli
,
B.
,
Schenato
,
L.
,
Franceschetti
,
M.
,
Poolla
,
K.
,
Jordan
,
M.
, and
Sastry
,
S. S.
,
2004
, “
Kalman Filtering With Intermittent Observations
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1453
1464
.10.1109/TAC.2004.834121
19.
V.
Gupta
,
A. F.
Dana
,
R. M.
Murray
, and
Hassibi
,
B.
,
2006
, “
On the Effect of Quantization on Performance
,”
Proceeding of IEEE American Control Conference
, pp.
1364
1369
.
20.
Seiler
,
P.
, and
Sengupta
,
R.
,
2001
, “
Analysis of Communication Losses in Vehicle Control Problems
,”
Proceeding of IEEE American Control Conference
, pp.
1491
1496
.
21.
Azimi-Sadjadi
,
B.
,
2003
, “
Stability of Networked Control Systems in the Presence of Packet Losses
,”
Proceeding of 42nd IEEE Conference on Decision and Control
, pp.
676
681
.
22.
Tatikonda
,
S.
,
Sahai
,
A.
, and
Mitter
,
S. K.
,
2004
, “
Control Over Noisy Channels
,”
IEEE Trans. Autom. Control
,
49
(
7
), pp.
1196
1201
.10.1109/TAC.2004.831102
23.
Imer
,
O. C.
,
Yuksel
,
S.
, and
Başar
,
T.
,
2006
, “
Optimal Control of LTI Systems Over Communication Networks
,”
Automatica
,
42
, pp.
1429
1440
.10.1016/j.automatica.2006.03.011
24.
Verriest
,
E.
, and
Egerstedt
,
M.
,
2002
, “
Control with Delayed and Limited Information: A First Look
,”
Proceeding of 41st IEEE Conference on Decision and Control
, pp.
1231
1236
.
25.
Hadjicostis
,
C. N.
, and
Turi
,
R.
,
2002
, “
Feedback Control Utilizing Packet Dropping Network Links
,”
Proceeding of 41st IEEE Conference on Decision and Control
, pp.
1205
1210
.
26.
Elia
,
N.
,
2005
, “
Remote Stabilization Over Fading Channels
,”
Syst. Control Lett.
54
, pp.
237
249
.10.1016/j.sysconle.2004.08.009
27.
Coviello
,
L.
,
Minero
,
P.
, and
Franceschetti
,
M.
,
2011
, “
Stabilization Over Markov Feedback Channels
,”
50th IEEE Conference on Decision and Control and European Control Conference
, pp.
3776
3782
.
28.
Furuta
,
K.
,
Yamakita
,
M.
, and
Kobayashi
,
S.
,
1991
,”
Swing Up Control of Inverted Pendulum
,”
IEEE IECON’91
, pp.
2193
2198
.
29.
Block
,
D.
,
2012
,”
Lecture Notes on Control Systems Laboratory
,” see http://coecsl.ece.illinois.edu/ge420/.
You do not currently have access to this content.