A dynamic mirror actuator utilizing antagonistic piezoelectric stack actuators is presented for use in laser printers. Exhibiting hysteresis and other nonlinearities in open-loop operation, the dynamic mirror actuator (DMA) requires a control structure to achieve accurate mirror positioning. A linear DMA model is developed for extending operational bandwidth under closed-loop control, employing explicit piezoelectric stack actuator (PESA) charging dynamics and incorporating two modes for single input control of opposing PESA drives. Compared to constitutive models from literature, the proposed model displays a comparable fit with experimental frequency response data while retaining a lower model order. As further validation, simulated step response data are shown to agree with experimental data.

References

References
1.
Chen
,
C.-L.
,
Chiu
,
G. T.-C.
, and
Allebach
,
J. P.
,
2008
, “
Halftone Banding Reduction for a Class of Electrophotographic Systems—Part I: Characterization and Modeling
,”
Mechatronics
,
18
(
8
), pp.
400
411
.10.1016/j.mechatronics.2008.03.004
2.
Ewe
,
M. T.
,
Chiu
,
G. T.
,
Grice
,
J.
,
Allebach
,
J.
,
Chan
,
C.
, and
Foote
,
W.
,
2002
, “
Banding Reduction in Electrophotographic Processes Using and Piezoelectric Actuated Laser Beam Deflection Device
,”
J. Imaging Sci. Technol.
,
46
(
5
), pp.
433
442
. Available at http://www.ingentaconnect.com/content/ist/jist/2002/00000046/00000005/art00006
3.
Cheng
,
H.-M.
,
Ewe
,
M. T.
,
Chiu
,
G. T.
, and
Bashir
,
R.
,
2001
, “
Modeling and Control of Piezoelectric Cantilever Beam Micro-Mirror and Micro-Laser Arrays to Reduce Image Banding in Electrophotographic Processes
,”
J. Micromech. Microeng.
,
11
, pp.
487
498
.10.1088/0960-1317/11/5/307
4.
Mynderse
,
J. A.
, and
Chiu
,
G. T.-C.
,
2010
, “
Modeling of a Dynamic Mirror Actuator
,”
Proceedings of the 2010 ASME Dynamic Systems and Control Conference (DSCC2010)
, pp.
15
22
.
5.
Mynderse
,
J. A.
,
Whitney
,
A. M.
, and
Chiu
,
G. T.-C.
,
2011
, “
Improved Modeling of a Dynamic Mirror With Antagonistic Piezoelectric Stack Actuation
,”
Proceedings of the 2011 ASME Dynamic Systems and Control Conference (DSCC2011)
.
6.
Wilson
,
J. T.
,
Lin
,
C.-Y.
, and
Tsao
,
T.-C.
,
2006
, “
Design and Control of a Fast Tool Servo for Boring Engine Piston Pin Holes
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition (IMECE2006)
.
7.
Jaffe
,
B.
,
Cook
,
W. R.
, and
Jaffe
,
H.
,
1971
,
Piezoelectric Ceramics
,
Academic
,
New York
.
8.
Clark
,
W. W.
,
2000
, “
Vibration Control With State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
.10.1106/18CE-77K4-DYMG-RKBB
9.
Corr
,
L. R.
, and
Clark
,
W. W.
,
2002
, “
Comparison of Low-Frequency Piezoelectric Switching Shunt Techniques for Structural Damping
,”
Smart Mater. Struct.
,
11
(
3
), pp.
370
376
.10.1088/0964-1726/11/3/307
10.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1997
, “
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
,”
IEEE Control Syst. Mag.
,
17
(
3
), pp.
69
79
.10.1109/37.588158
11.
Georgiou
,
H. M. S.
, and
Ben Mrad
,
R.
,
2006
, “
Electromechanical Modeling of Piezoceramic Actuators for Dynamic Loading Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
3
), pp.
558
567
.10.1115/1.2234486
12.
Adriaens
,
H. J.
,
de Koning
,
W. L.
, and
Banning
,
R.
,
2000
, “
Modeling Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
5
(
4
), pp.
331
341
.10.1109/3516.891044
13.
Chen
,
X. B.
,
Zhang
,
Q. S.
, and
Kang
,
D.
,
2007
, “
Modeling of Piezo-Actuated Positioning Systems
,”
2007 IEEE International Conference on Mechatronics and Automation
, A. Ming, S. Guo, and S. Liu, eds., IEEE, pp.
1466
1470
.
You do not currently have access to this content.