In this paper, we present an adaptive estimation framework predicated on multiagent network identifiers with undirected and directed graph topologies. Specifically, the system state and plant parameters are identified online using N agents implementing adaptive observers with an interagent communication architecture. The adaptive observer architecture includes an additive term which involves a penalty on the mismatch between the state and parameter estimates. The proposed architecture is shown to guarantee state and parameter estimate consensus. Furthermore, the proposed adaptive identifier architecture provides a measure of agreement of the state and parameter estimates that is independent of the network topology and guarantees that the deviation from the mean estimate for both the state and parameter estimates converge to zero. Finally, an illustrative numerical example is provided to demonstrate the efficacy of the proposed approach.

References

References
1.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
1989
,
Stable Adaptive Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Sumizaki
,
K.
,
Liu
,
L.
, and
Hara
,
S.
,
2010
, “
Adaptive Consensus on a Class of Nonlinear Multi-Agent Dynamical Systems
,”
Proc. SICE Annual Conf.
, pp.
1141
1145
.
3.
Das
,
A.
, and
Mesbahi
,
M.
,
2006
, “
Distributed Linear Parameter Estimation in Sensor Networks Based on Laplacian Dynamics Consensus Algorithm
,”
IEEE Comm. Soc. Sensor and Ad Hoc Communications and Networks
,
2
, pp.
440
449
. 10.1109/SAHCN.2006.288500
4.
Stankovic
,
S.
,
Stankovic
,
M.
, and
Stipanovic
,
D.
,
2011
, “
Decentralized Parameter Estimation by Consensus Based Stochastic Approximation
,”
IEEE Trans. Autom. Control
,
56
, pp.
531
543
.10.1109/TAC.2010.2076530
5.
Olfati-Saber
,
R.
,
2007
, “
Distributed Kalman Filtering for Sensor Networks
,”
Proc. IEEE Conf. Dec. Contr
, pp.
5492
5498
.
6.
Schwager
,
M.
,
Slotine
,
J. J.
, and
Rus
,
D.
,
2007
, “
Decentralized, Adaptive Control for Coverage With Networked Robots
,”
Proc. IEEE Int. Conf. Robotics and Automation
.
7.
Schwager
,
M.
,
Slotine
,
J. J.
, and
Rus
,
D.
,
2008
, “
Consensus Learning for Distributed Coverage Control
,”
Proc. IEEE Int. Conf. Robotics and Automation
.
8.
Demetriou
,
M. A.
, and
Nestinger
,
S. S.
,
2011
, “
Adaptive Consensus Estimation of Multi-Agent Systems
,”
Proc. IEEE Conf. Dec. Contr.
, pp.
354
359
.
9.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E. M.
,
2007
, “
Information Consensus in Multivehicle Cooperative Control
,”
IEEE Control Syst. Mag.
,
27
(
2
), pp.
71
82
.10.1109/MCS.2007.338264
10.
Hui
,
Q.
, and
Haddad
,
W. M.
,
2008
, “
Distributed Nonlinear Control Algorithms for Network Consensus
,”
Automatica
,
44
(
9
), pp.
2375
2381
.10.1016/j.automatica.2008.01.011
11.
Mesbahi
,
M.
, and
Egerstedt
,
M.
,
2010
,
Graph Theoretic Methods for Multiagent Networks
,
Princeton University Press
,
Princeton, NJ
.
12.
Godsil
,
C.
, and
Royle
,
G.
,
2001
,
Algebraic Graph Theory
,
Springer-Verlag
,
New York
.
13.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1995
,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
.
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
15.
Morgan
,
A. P.
, and
Narendra
,
K. S.
,
1977
, “
On the Stability of Nonautonomous Differential Equations x·=[A+B(t)]x, With Skew Symmetric Matrix B(t)
,”
SIAM J. Control Optim.
,
15
(
1
), pp.
163
176
.10.1137/0315013
16.
Bryson
,
A. E.
,
1993
,
Control of Aircraft and Spacecraft
,
Princeton University Press
,
Princeton, NJ
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.