This paper develops feedback controllers for walking in 3D, on level ground, with energy efficiency as the performance objective. Assume The Robot Is A Sphere (ATRIAS) 2.1 is a new robot that has been designed for the study of 3D bipedal locomotion, with the aim of combining energy efficiency, speed, and robustness with respect to natural terrain variations in a single platform. The robot is highly underactuated, having 6 actuators and, in single support, 13 degrees of freedom. Its sagittal plane dynamics are designed to embody the spring loaded inverted pendulum (SLIP), which has been shown to provide a dynamic model of the body center of mass during steady running gaits of a wide diversity of terrestrial animals. A detailed dynamic model is used to optimize walking gaits with respect to the cost of mechanical transport (CMT), a dimensionless measure of energetic efficiency, for walking speeds ranging from 0.5 (m/s) to 1.4 (m/s). A feedback controller is designed that stabilizes the 3D walking gaits, despite the high degree of underactuation of the robot. The 3D results are illustrated in simulation. In experiments on a planarized (2D) version of the robot, the controller yielded stable walking.

References

1.
Grimes
,
J. A.
, and
Hurst
,
J. W.
,
2012
, “
The Design of ATRIAS 1.0 a Unique Monoped, Hopping Robot
,”
Proceedings of the 2012 International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, pp.
548
554
.
2.
Collins
,
S. H.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
, pp.
1082
1085
.10.1126/science.1107799
4.
Blickhan
,
R.
,
1989
, “
The Spring Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.10.1016/0021-9290(89)90224-8
5.
McMahon
,
T. A.
, and
Cheng
,
G. C.
,
1990
, “
The Mechanics of Running: How Does Stiffness Couple With Speed?
,”
J. Biomech.
,
23
, pp.
65
78
.10.1016/0021-9290(90)90042-2
6.
Farley
,
C. T.
,
Glasheen
,
J.
, and
McMahon
,
T. A.
,
1993
, “
Running Springs: Speed and Animal Size
,”
J. Exp. Biol.
,
185
,, pp.
71
86
.
7.
Full
,
R. J.
, and
Farley
,
C. T.
,
2000
, “
Musculoskeletal Dynamics in Rhythmic Systems—A Comparative Approach to Legged Locomotion
,”
Biomechanics and Neural Control of Posture and Movement
,
J. M.
Winters
and
P. E.
Crago
, eds.
Springer-Verlag
,
New York
.
8.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2001
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
, pp.
649
655
.10.1016/S0021-9290(01)00245-7
9.
Raibert
,
M.
,
1986
,
Legged Robots that Balance
,
MIT Press
,
Cambridge, MA
.
10.
Zeglin
,
G.
, and
Brown
,
H. B.
,
1998
, “
Control of a Bow Leg Hopping Robot
,”
IEEE International Conference on Robotics and Automation
.
11.
Ahmadi
,
M.
, and
Buehler
,
M.
,
2006
, “
Controlled Passive Dynamic Running Experiment With the ARL Monopod II
,”
IEEE Trans. Robotics
,
22
, pp.
974
986
.10.1109/TRO.2006.878935
12.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
Compliant Hybrid Zero Dynamics Controller for Achieving Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Robot. Res.
,
30
(
9
), pp.
1170
1193
.10.1177/0278364910379882
13.
Sreenath
,
K.
,
Park
,
H.-W.
, and
Grizzle
,
J.
,
2012
, “
Design and Experimental Implementation of a Compliant Hybrid Zero Dynamics Controller With Active Force Control for Running on MABEL
,”
International Conference on Robotics and Automation (ICRA)
, pp.
51
56
.
14.
Park
,
H.-W.
,
Sreenath
,
K.
,
Ramezani
,
A.
, and
Grizzle
,
J.
,
2012
, “
Switching Control Design for Accommodating Large Step-Down Disturbances in Bipedal Robot Walking
,”
International Conference on Robotics and Automation (ICRA)
, pp.
3331
3450
.
15.
Park
,
H.-W.
,
Ramezani
,
A.
, and
Grizzle
,
J.
,
2013
, “
A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking
,”
IEEE Trans. Rob. Autom.
,
29
, pp.
45
50
.10.1109/TRO.2012.2230992
16.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains the Basic Dynamics of Walking and Running
,”
Proc. R. Soc., London, Ser. B
,
273
, pp.
2861
2867
.10.1098/rspb.2006.3637
17.
Laboratory
,
D. R.
,
2012
, “SolidWorks—Model Parameters for ATRIAS Based on Solidworks,” http://code.google.com/p/atrias/
18.
Hodgins
,
J. K.
, and
Raibert
,
M. H.
,
1991
, “
Adjusting Step Length for Rough Terrain Locomotion
,”
IEEE Trans. Rob. Autom.
,
7
(
3
), pp.
289
298
.10.1109/70.88138
19.
Ahmadi
,
M.
, and
Buehler
,
M.
,
1999
, “
The ARL Monopod II Running Robot: Control and Energetics
,”
IEEE International Conference on Robotics and Automation
, pp.
1689
1694
.
20.
Chevallereau
,
C.
,
Abba
,
G.
,
Aoustin
,
Y.
,
Plestan
,
F.
,
Westervelt
,
E. R.
,
Canudas-de-Wit
,
C.
, and
Grizzle
,
J. W.
,
2003
, “
RABBIT: A Testbed for Advanced Control Theory
,”
IEEE Control Syst. Mag.
,
23
(
5
), pp.
57
79
.10.1109/MCS.2003.1234651
21.
Corp
.,
H.
, “Asimo Humanoid Robot,” http://world.honda.com/asimo/
22.
McGeer
,
T.
,
1988
, “
Stability and Control of Two-Dimensional Biped Walking
,”
Center for Systems Science
,
Simon Fraser University
,
Burnaby, B.C., Canada
, Technical Report 1.
23.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
24.
Collins
,
S. H.
,
Wisse
,
M.
, and
Ruina
,
A.
,
2001
, “
A 3-D Passive Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Robot. Res.
,
20
, pp.
607
615
.10.1177/02783640122067561
25.
Pratt
,
J.
, and
Pratt
,
G.
,
1998
, “
Exploiting Natural Dynamics in the Control of a Planar Bipedal Walking Robot
,”
Proceedings of the Thirty-Sixth Annual Allerton Conference on Communication, Control, and Computing
.
26.
Playter
,
R.
,
Buehler
,
M.
, and
Raibert
,
M.
,
2006
, “
Bigdog
,”
Proceedings of SPIE International Society for Optical Engineering
,
G. R.
Gerhart
,
C. M.
Shoemaker
, and
D. W.
Gage
, eds.,
SPIE
, Vol.
6230
.
27.
Robinson
,
D. W.
,
Pratt
,
J. E.
,
Paluska
,
D. J.
, and
Pratt
,
G. A.
,
1999
, “
Series Elastic Actuator Development for a Biomimetic Walking Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
561
568
.
28.
Boaventura
,
T.
,
Semini
,
C.
,
Buchli
,
J.
,
Frigerio
,
M.
,
Focchi
,
M.
, and
Caldwell
,
D. G.
,
2012
, “
Dynamic Torque Control of a Hydraulic Quadruped Robot
,”
IEEE Conference on Robotics and Automation
, pp.
1189
1894
.
29.
Kim
,
S.
,
2012
, “Biomimetics Robotics Lab,” http://sangbae.scripts.mit.edu/biomimetics/videos/
30.
Chevallereau
,
C.
,
Grizzle
,
J.
, and
Shih
,
C.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot
,”
IEEE Trans. Rob. Autom.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
31.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion. Control and Automation
,
CRC Press
,
Boca Raton, FL
.
32.
Tuttle
,
T.
, and
Seering
,
W.
,
1996
, “
A Nonlinear Model of a Harmonic Drive Gear Transmission
,”
IEEE Trans. Rob. Autom.
,
12
(
3
), pp.
368
374
.10.1109/70.499819
33.
Kennedy
,
C.
, and
Desai
,
J.
,
2005
, “
Modeling and Control of the Mitsubishi pa-10 Robot Arm Harmonic Drive System
,”
IEEE/ASME Trans. Mechatron.
,
10
(
3
), pp.
263
274
.10.1109/TMECH.2005.848290
34.
Hurmuzlu
,
Y.
, and
Chang
,
T.
,
1992
, “
Rigid Body Collisions of a Special Class of Planar Kinematic Chains
,”
IEEE Trans. Syst. Man Cybern.
,
22
(
5
), pp.
964
971
.10.1109/21.179836
35.
Grizzle
,
J. W.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
,
46
, pp.
51
64
.10.1109/9.898695
36.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
37.
Canudas-de-Wit
,
C.
,
2004
, “
On the Concept of Virtual Constraints as a Tool for Walking Robot Control and Balancing
,”
Annu. Rev. Control
,
28
, pp.
157
166
.10.1016/j.arcontrol.2004.03.002
38.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems: An Introduction
, 3rd ed.,
Springer-Verlag
,
Berlin, Germany
.
39.
Sreenath
,
K.
,
Park
,
H.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2011
, “
A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient, and Fast Bipedal Walking on MABEL
,”
Int. J. Robot. Res.
,
30
, pp.
1170
1193
.10.1177/0278364910379882
40.
Morris
,
B.
, and
Grizzle
,
J. W.
,
2009
, “
Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1751
1764
.10.1109/TAC.2009.2024563
41.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer
,
New York
.
42.
Ruina
,
A.
,
2012
, “Cornell Ranger, 2011 4-Legged Bipedal Robot,” Nov. http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger 2011/index.html
43.
Shih
,
C.
,
Grizzle
,
J.
, and
Chevallereau
,
C.
,
2012
, “
From Stable Walking to Steering of a 3D Bipedal Robot With Passive Point Feet
,”
Robotica
,
30
, pp.
1119
1130
.10.1017/S026357471100138X
You do not currently have access to this content.