A new automatic method to tune the parameters of high order linear controllers is presented. The autotuning is achieved by minimizing, without constraints, a cost function that is related to the open loop shaping problem. The effort demanded from the designer is similar to that required to tune a low order controller, such as proportional integral (PI) or proportional integral differential (PID). The capabilities of the new method are demonstrated on two examples.

References

References
1.
Åström
,
K. J.
,
Panagopoulos
,
H.
, and
Hagglund
,
T.
,
1998
, “
Design of PI Controllers Based on Non-Convex Optimization
,”
Automatica
,
34
(
5
), pp.
585
601
.10.1016/S0005-1098(98)00011-9
2.
Lee
,
Y.
,
Park
,
S.
and
Lee
,
M.
,
1998
, “
PID Controller Tuning for Desired Closed-Loop Responses for SI/SO Systems
,”
AKhE J.
,
44
(
1
) pp.
106
115
.10.1002/aic.690440112
3.
Yaniv
,
O.
, and
Nagurka
,
M.
,
2003
, “
Robust PI Controller Design Satisfying Sensitivity and Uncertainty Specifications
,”
IEEE Trans. Autom. Control
,
48
(
11
), pp.
2069
2072
.10.1109/TAC.2003.819646
4.
Fransson
,
C. M.
,
Wik
,
T.
,
Lennartson
,
B.
,
Saunders
,
M.
, and
Gutman
,
P.-O.
,
2008
, “
Nonconservative Robust Control: Optimized and Constrained Sensitivity Functions
,”
IEEE Trans. Control Syst. Technol.
,
17
(
2
), pp.
298
308
.10.1109/TCST.2008.924564
5.
Schmidt
,
D. E.
, and
Sourlas
,
D. D.
,
2001
, “
Low-Order Controller Design Using Global Optimization
,”
Ind. Eng. Chem. Res.
,
40
(
21
), pp.
4555
4569
.10.1021/ie0006561
6.
Horowitz
,
I.
,
1993
,
Quantitative Feedback Design Theory
,
QFT Publications
,
Boulder, CO
.
7.
Cervera
,
J.
, and
Baños
,
A.
,
2008
, “
Automatic Loop Shaping in QFT Using CRONE Structures
,”
J. Vib. Control,
14
(
9–10
), pp.
1513
1529
.10.1177/1077546307087433
8.
Chen
,
W.
,
Balance
,
D. J.
, and
Yun
,
L.
,
1998
, “
Automatic Loop-Shaping in QFT Using Genetic Algorithm
,”
World J. Eng.
,
1
(
2
), pp.
8
17
.
9.
Sjöberg
,
J.
,
Gutman
,
P.-O.
,
Agarwal
,
M.
, and
Bax
,
M.
,
2009
, “
Nonlinear Controller Tuning Based on a Sequence of Identifications of Linearized Time-Varying Models
,”
Control Eng. Pract.
,
17
(
2
), pp.
311
321
.10.1016/j.conengprac.2008.08.001
10.
Kaneko
,
T.
,
Matsumoto
,
H.
,
Mine
,
H.
,
Nishida
,
H.
, and
Nakayama
,
T.
,
2008
, “
Offline Tuning of Positioning Control System Using Particle Swarm Optimization Considering Speed Controller
,”
Electr. Eng. Jpn.
,
163
(
3
), pp.
68
77
.10.1002/eej.20668
11.
Ziqian
,
L.
,
2007
, “
Self-Tuning Control of Electrical Machines Using Gradient Descent Optimization
,”
Optim. Control Appl. Methods
,
28
(
2
), pp.
77
93
.10.1002/oca.789
12.
Kim
,
T.
,
Maruta
,
I.
, and
Sugie
,
T.
,
2008
, “
Robust PID Controller Tuning Based on the Constrained Particle Swarm Optimization
,”
Automatica
,
444
, pp.
1104
1110
.10.1016/j.automatica.2007.08.017
13.
Hwang
,
J.-H.
, and
Tsay
,
S.-Y.
,
2004
, “
Optimal Tuning of PID Controllers With Specified Gain and Phase Margins
,”
Chem. Eng. Commun.
,
191
(
9
), pp.
1208
1233
.10.1080/00986440490464066
14.
Yaniv
,
O.
, and
Nagurka
,
M.
,
2005
, “
Automatic Loop Shaping of Structured Controllers Satisfying QFT Performance
,”
ASME J. Dyn. Syst., Meas., Control, Trans. ASME
,
127
, pp.
472
477
.10.1115/1.1985441
15.
Gera
,
A.
, and
Horowitz
,
I.
,
1980
, “
Optimization of the Loop Transfer Function
,”
Int. J. Control
,
31
(
2
), pp.
389
398
.10.1080/00207178008961049
16.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
17.
Yaniv
,
O.
, and
Nagurka
,
M.
,
2004
, “
Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants
,”
Automatica
,
40
(
1
), pp.
111
116
.10.1016/j.automatica.2003.08.005
18.
Jones
,
D. R.
,
2001
,
The DIRECT Global Optimization Algorithm
,
Kluwer
,
Norwell, MA
.
19.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
Soc. Ind. Appl. Math.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
20.
Mega FAB Technology
Accelerates Motion Controllers Development With WizAlg Tools
, http://www.mega-f.co.il/WizAlg.pdf
21.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
22.
Gutman
,
P.-O.
,
Baril
,
C.
, and
Neumann
,
L.
,
1994
, “
An Algorithm for Computing Value Sets of Uncertain Transfer Functions in Factored Real Form
,”
IEEE Trans. Autom. Control
,
29
(
6
), pp.
1268
1273
.10.1109/9.293194
23.
Gutman
,
P. O.
,
1996
,
QSYN the Toolbox for Robust Control Systems Design for use With Matlab User Guide
,
El-Op Electro-Optics Industries Ltd, Rehovot, Israel
.
24.
Mathworks
,
2008
,
MATLAB User's Guide
,
The MathWorks, Natick, MA
.
25.
Zahara
,
E.
, and
Kao
,
Y. T.
,
2009
, “
Hybrid Nelder-Mead Simplex Search and Particle Swarm Optimization for Constrained Engineering Design Problem
,”
Expert Syst. Appl.
,
36
(
2
), pp.
3880
3886
.10.1016/j.eswa.2008.02.039
26.
Durand
,
N.
, and
Alliot
,
J. N.
,
1999
, “
A Combined Nelder Mead Simplex and Genetic Algorithm
,” http://recherche.enac.fr/opti/papers/articles/gecco99.pdf
27.
Luersen
,
M. A.
, and
Le Riche
,
R.
,
2004
, “
Globalized Nelder Mead method for Engineering Optimization
,”
Comput. Struct.
,
82
(
23–26
), pp.
2251
2260
.10.1016/j.compstruc.2004.03.072
28.
Wang
,
C.
, and
Li
,
D.
,
2011
, “
Decentralized PID Controllers Based on Probabilistic Robustness
,”
ASME J. Dyn. Syst., Meas. Control
,
133
(
6
), p.
061015
. 10.1115/1.4004781
29.
Zimmerman
,
Y.
,
2013
, “
Automatic Loop Shaping for Multi-Criteria Robust Control Design
,” M. Sc. thesis, Technion—Israel Institute of Technology, Haifa, Israel.
30.
Wie
,
B.
, and
Bernstein
,
S. D.
,
1992
, “
Benchmark Problems for Robust Control Design
,”
J. Guid. Control Dyn.
,
15
(
5
), pp.
1057
1059
.10.2514/3.20949
31.
Stengel
,
R. F.
, and
Marison
,
C. I.
,
1992
, “
Robustness of Solutions to a Benchmark Control Problem
,”
J. Guid. Control Dyn.
,
15
(
5
), pp.
1060
1067
.10.2514/3.20950
You do not currently have access to this content.