Pendulum models have been studied as benchmark problems for development of nonlinear control schemes, as well as reduced-order models for the dynamics analysis of gait, balance and fall for humanoid robots. We have earlier introduced the reaction mass pendulum (RMP), an extension of the traditional inverted pendulum models, which explicitly captures the variable rotational inertia and angular momentum of a human or humanoid. The RMP consists of an extensible “leg”, and a “body” with moving proof masses that gives rise to the variable rotational inertia. In this paper, we present a thorough analysis of the RMP, which is treated as a three-dimensional (3D) multibody system in its own right. We derive the complete kinematics and dynamics equations of the RMP system and obtain its equilibrium conditions. We show that the equilibria of this system consist of an unstable equilibrium manifold and a stable equilibrium manifold. Next, we present a nonlinear control scheme for the RMP, which is an underactuated system with three unactuated degrees of freedom (DOFs). This scheme asymptotically stabilizes this underactuated system at its unstable equilibrium manifold, with a vertically upright configuration for the “leg” of the RMP. The domain of convergence of this stabilization scheme is shown to be almost global in the state space of the RMP. Numerical simulation results verify this stability property of the control scheme and demonstrate its effectiveness in stabilizing the unstable equilibrium manifold.

References

References
1.
Shiriaev
,
A. S.
,
Ludvigsen
,
H.
, and
Egeland
,
O.
,
2004
, “
Swinging Up the Spherical Pendulum via Stabilization of Its First Integrals
,”
Automatica
,
40
(
1
), pp.
73
85
.10.1016/j.automatica.2003.07.009
2.
Furuta
,
K.
,
2003
, “
Control of Pendulum: From Super Mechano-System to Human Adaptive Mechatronics
,”
IEEE Conference on Decision and Control
,
Maui, HI
, pp.
1498
1507
.
3.
Astrom
,
K. J.
, and
Furuta
,
K.
,
1996
, “
Swinging-Up a Pendulum by Energy Control
,”
Proceedings of the IFAC Congress
, Vol.
E
, pp.
37
42
.
4.
Kajita
,
S.
, and
Tani
,
K.
,
1991
, “
Study of Dynamic Biped Locomotion on Rugged Terrain
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1405
1411
.
5.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, Maui, Hawaii, “
The 3D Linear Inverted Pendulum Model: A Simple Modeling for a Biped Walking Pattern Generator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
239
246
.
6.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei, Taiwan
, pp.
1620
1626
.
7.
Sugihara
,
T.
, and
Nakamura
,
Y.
,
2003
, Germany, “
Variable Impedant Inverted Pendulum Model Control for a Seamless Contact Phase Transition on Humanoid Robot
,”
IEEE International Conference on Humanoid Robots (Humanoids 2003)
.
8.
Altendorfer
,
R.
,
Saranli
,
U.
,
Komsuoglu
,
H.
,
Koditschek
,
D.
,
Brown
,
H. B.
,
Buehler
,
M.
,
Moore
,
N.
,
McMordie
,
D.
, and
Full
,
R.
,
2001
, “
Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot
,”
Experimental Robotics VII
,
D.
Rus
and
S.
Singh
, eds.,
Springer-Verlag
, Berlin, pp.
291
302
.
9.
Komura
,
T.
,
Leung
,
H.
,
Kudoh
,
S.
, and
Kuffner
,
J.
,
2005
, Barcelona, Spain, “
A Feedback Controller for Biped Humanoids That Can Counteract Large Perturbations During Gait
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2001
2007
.
10.
Komura
,
T.
,
Nagano
,
A.
,
Leung
,
H.
, and
Shinagawa
,
Y.
,
2005
,
September
, “
Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model
,”
IEEE Trans. Biomed. Eng.
,
52
(
9
), pp.
1502
1513
.10.1109/TBME.2005.851530
11.
Kuo
,
A.
,
2007
, “
The Six Determinants of Gait and the Inverted Pendulum Analogy: A Dynamic Walking Perspective
,”
Hum. Mov. Sci.
,
26
(
4
), pp.
617
656
.10.1016/j.humov.2007.04.003
12.
Dutta
,
A.
, and
Goswami
,
A.
,
2010
, “
Human Postural Model that Captures Rotational Inertia
,” American Society of Biomechanics, Providence, RI.
13.
Abdallah
,
M.
, and
Goswami
,
A.
,
2005
, Barcelona, Spain, “
A Biomechanically Motivated Two-Phase Strategy for Biped Robot Upright Balance Control
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3707
3713
.
14.
Herr
,
H.
, and
Popovic
,
M.
,
2008
, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
,
211
, pp.
467
481
.10.1242/jeb.008573
15.
Hofmann
,
A.
,
2006
, “
Robust Execution of Biped Walking Tasks From Biomechanical Principles
,” Ph.D. thesis, MIT, AI Lab, Cambridge, MA.
16.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Vol.
2
,
Las Vegas, NV
, pp.
1644
1650
.
17.
Vermeulen
,
J.
,
Verrelst
,
B.
,
Vanderborght
,
B.
,
Lefeber
,
D.
, and
Guillaume
,
P.
,
2006
, “
Trajectory Planning for the Walking Biped “Lucy,
Int. J. Rob. Res.
,
25
(
9
), pp.
867
887
.10.1177/0278364906069343
18.
Westervelt
,
E.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. O.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
.
19.
Lee
,
S.-H.
, and
Goswami
,
A.
,
2007
, “
Reaction Mass Pendulum (RMP): An Explicit Model for Centroidal Angular Momentum of Humanoid Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Rome, Italy
, pp.
4667
4672
.
20.
Hernandez-Garduno
,
A.
,
Lawson
,
J. L.
, and
Marsden
,
J. E.
,
2005
, “
Relative Equilibria for the Generalized Rigid Body
,”
J. Geometry Physics
,
53
, pp. 259–274. 10.1016/j.geomphys.2004.06.007
21.
Shen
,
J.
,
Sanyal
,
A. K.
,
Chaturvedi
,
N. A.
,
Bernstein
,
D. S.
, and
McClamroch
,
N. H.
,
2004
, “
Dynamics and Control of a 3D Pendulum
,”
IEEE Conference on Decision and Control
,
Nassau, Bahamas
, pp.
323
328
.
22.
Shen
,
J.
,
Sanyal
,
A. K.
, and
McClamroch
,
N. H.
,
2003
, “
Asymptotic Stability of Multibody Attitude Systems
,”
Stability and Control of Dynamical Systems with Applications
,
D.
Liu
and
J.
Antsaklis
, eds.,
Birkhauser
,
Cambridge, MA
, pp.
291
302
.
23.
Chaturvedi
,
N. A.
,
Bacconi
,
F.
,
Sanyal
,
A. K.
,
Bernstein
,
D. S.
, and
McClamroch
,
N. H.
,
2005
, “
Stabilization of a 3D Rigid Pendulum
,”
American Control Conference
,
Portland, OR
, pp.
3030
3035
.
24.
Chaturvedi
,
N. A.
, and
McClamroch
,
N. H.
,
2006
,
San Diego, C. A.
, “
Global Stabilization of an Inverted 3D Pendulum including Control Saturation Effects
,”
IEEE Conference on Decision and Control
, pp.
6488
6493
.
25.
Astrom
,
K.
,
Block
,
A.
, and
Spong
,
M.
,
2001
, “
The Reaction Wheel Pendulum
,” http://decision.csl.uiuc.edu/spong/main.htm
26.
Sanyal
,
A. K.
, and
Goswami
,
A.
,
2011
, “
Dynamics and Control of the Reaction Mass Pendulum (RMP) As a 3D Multibody System: Application to Humanoid Modeling
,”
ASME Dynamic Systems and Control Conference
,
Arlington, VA
, pp.
589
596
.
27.
Goldstein
,
H.
,
1980
,
Classical Mechanics
,
2 ed.
,
Addison-Wesley
,
Reading, MA
.
28.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
, No. 24 in Interdisciplinary Texts in Mathematics,
Springer–Verlag
,
New York
.
29.
Abraham
,
R.
, and
Marsden
,
J. E.
,
1978
,
Foundations of Mechanics
,
2 ed.
,
Benjamin/Cummings Publishing Company
,
New York
.
30.
Shen
,
J.
,
2002
, “
Nonlinear Control of Multibody Systems With Symmetries via Shape Change
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
31.
Khalil
,
H. K.
,
1995
,
Nonlinear Systems
,
2 ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Chaturvedi
,
N. A.
,
McClamroch
,
N. H.
, and
Bernstein
,
D. S.
,
2009
, “
Asymptotic Smooth Stabilization of the Inverted 3D Pendulum
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1204
1215
.10.1109/TAC.2009.2019792
33.
Sanyal
,
A. K.
, and
Chaturvedi
,
N. A.
,
2008
, “
Almost Global Robust Attitude Tracking Control of Spacecraft in Gravity
,”
AIAA Guidance, Navigation and Control Conference
,
Honolulu, HI
, pp. AIAA–2008–6979.
34.
Sanyal
,
A. K.
,
Fosbury
,
A.
,
Chaturvedi
,
N. A.
, and
Bernstein
,
D. S.
,
2009
, “
Inertia-Free Spacecraft Attitude Trajectory Tracking With Disturbance Rejection and Almost Global Stabilization
,”
AIAA J. Guid., Control Dyn.
,
32
(
2
), pp.
1167
1178
.10.2514/1.41565
35.
Chaturvedi
,
N. A.
,
Sanyal
,
A. K.
, and
McClamroch
,
N. H.
,
2011
, “
Rigid-Body Attitude Control: Using Rotation Matrices for Continuous, SIngularity-Free Control Laws
,”
IEEE Control Syst. Mag.
,
31
(
3
), pp.
30
51
.10.1109/MCS.2011.940459
36.
Milnor
,
J.
,
1963
,
Morse Theory
,
Princeton University Press
,
Princeton, NJ
.
You do not currently have access to this content.