This paper studies the problem of designing insensitive H output-feedback controllers for linear discrete-time systems. The designed controllers are insensitive to additive/multiplicative controller coefficient variations. An LMI-based procedure, which is a sequential linear programming matrix method (SLPMM), is proposed to solve the considered problem which is a nonconvex problem itself. It is worth mentioning that the nonfragile control design method is adopted to obtain an effective solution for accelerating convergence of SLPMM algorithm due to the fact that a good starting point for the iteration is very important.

References

References
1.
Whidborne
,
J. F.
,
Istepanian
,
R. S. H.
, and
Wu
,
J.
,
2001
, “
Reduction of Controller Fragility by Pole Sensitivity Minimization
,”
IEEE Trans. Autom. Control
,
46
(
2
), pp.
320
325
.10.1109/9.905702
2.
Yamaki
,
S.
,
Abe
,
M.
, and
Kawamata
,
M.
,
2008
, “
On the Absence of Limit Cycles in State-Space Digital Filters With Minimum L2-Sensitivity
,”
IEEE Trans. Circuits Syst. Express Briefs
,
55
(
1
), pp.
46
50
.10.1109/TCSII.2007.907757
3.
Li
,
G.
,
1998
, “
On the Structure of Digital Controllers With Finite Word Length Consideration
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
689
693
.10.1109/9.728872
4.
Guo
,
X. G.
, and
Yang
,
G. H.
,
2011
, “
H∞ Filter Design for Delta Operator Formulated Systems With Low Sensitivity to Filter Coefficient Variations
,”
IET Control Theory Appl.
,
5
(
15
), pp.
1677
1688
.10.1049/iet-cta.2010.0500
5.
Che
,
W. W.
, and
Yang
,
G. H.
,
2011
, “
Non-Fragile Dynamic Output Feedback H∞ Control for Discrete-Time Systems
,”
Int. J. Control Autom. Syst.
,
9
(
5
), pp.
993
997
.10.1007/s12555-011-0522-7
6.
Che
,
W. W.
, and
Wang
,
Y. L.
,
2011
, “
Non-Fragile Dynamic Output Feedback H∞ Control for Continuous-Time Systems With Controller Coefficient Sensitivity Consideration
,”
Proceedings of 2011 Chinese Control Decision and Conference
, Mianyang, China, pp.
2441
2446
.
7.
Ding
,
D. W.
,
Li
,
X. L.
,
Yin
,
Y. X.
, and
Sun
,
C. G.
,
2012
, “
Non-Fragile H∞ and H2 Filter Designs for Continuous-Time Linear Systems Based on Randomized Algorithms
,”
IEEE Trans. Ind. Electron.
,
59
(
11
), pp.
4433
4442
.10.1109/TIE.2011.2159350
8.
Leibfritz
,
F.
,
2000
, “
An LMI-Based Algorithm for Designing Suboptimal Static H2
/
H∞ Output Feedback Controllers
,”
SIAM J. Control Optim.
,
39
(
6
), pp.
1711
1735
.10.1137/S0363012999349553
9.
Li
,
L.
, and
Jia
,
Y.
,
2009
, “
Non-Fragile Dynamic Output Feedback Control for Linear Systems With Time-Varying Delay
,”
IET Control Theory Appl.
,
3
(
8
), pp.
995
–1005.10.1049/iet-cta.2008.0008
10.
Zhu
,
G.
,
Grigoriadis
,
K. M.
, and
Skelton
,
R. E.
,
1994
, “Optimal Finite Wordlength Digital Control With Skewed Sampling,”
Proceeding of 1994 American Control Conference
, Baltimore, MD, 3, pp. 3482–3486.10.1109/ACC.1994.735226
11.
de Oliveira
,
M. C.
,
Bemussou
,
J.
, and
Geromel
,
J. C.
,
2002
, “
Extended H2 and H∞ Norm Characterizations and Controller Parametrizations for Discrete-Time Systems
,”
Int. J. Control
,
75
(
9
), pp.
666
679
.10.1080/00207170210140212
12.
Löfberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design
, Taipei, Taiwan, China, pp.
284
289
.
13.
Labit
,
Y.
,
Peaucelle
,
D.
, and
Henrion
,
D.
,
2002
, “
SeDumi interface 1.02: A Tool for Solving LMI Problems With SeDumi
,”
Proceedigns of 2002 International Symposium on Computer Aided Control System Design
, Toulouse, France, pp.
272
277
.
You do not currently have access to this content.