This paper presents a Green's function-based design for deformation control of a microbeam described by an Euler-Bernoulli equation with in-domain pointwise actuation. The Green's function is first used in control design to construct the test function that enables the solvability of a map between the original nonhomogeneous partial differential equation and a target system in standard boundary control form. Then a regularized Green's function is employed in motion planning, leading to a computationally tractable implementation of the control scheme combined by a single feedback stabilizing loop and feedforward controls. The viability and the applicability of the proposed approach are demonstrated through numerical simulations of a representative microbeam.

References

References
1.
Tyson
,
R. K.
,
2000
,
Adaptive Optic Engineering Handbook
,
Marcel Dekker
,
NY
.
2.
Fraanje
,
R.
,
Massioni
,
P.
, and
Verhaejen
,
M.
,
2010
, “
A Decomposition Approach to Distributed Control of Dynamic Deformable Mirrors
,”
Int. J. Optomech.
,
4
(
3
), pp.
269
284
.10.1080/15599612.2010.512380
3.
Vogel
,
C. R.
, and
Yang
,
Q.
,
2007
, “
Modelling, Simulation, and Open-Loop Control of a Continuous Facesheet MEMS Deformable Mirror
,”
J. Opt. Soc. Am.
,
24
(
12
), pp.
3827
3833
.10.1364/JOSAA.24.003827
4.
Bifano
,
T. G.
,
Mali
,
R. K.
,
Dorton
,
J. K.
,
Perreault
,
J.
,
Vandelli
,
N.
,
Horenstein
,
M. N.
, and
Castanon
,
D. A.
,
1997
, “
Continuous-Membrane Surface-Micromachined Silicon Deformable Mirror
,”
J. Opt. Eng.
,
36
(
5
), pp.
1354
1360
.10.1117/1.601598
5.
Morzinski
,
K.
,
Harpsoe
,
K.
,
Gavel
,
D.
, and
Ammons
,
S.
,
2007
, “
The Open-Loop Control of MEMS: Modeling and Experimental Results
,”
Proc. SPIE
6467
, pp.
645
654
.
6.
Stewart
,
J. B.
,
Diouf
,
A.
,
Zhou
,
Y.
, and
Bifano
,
T. G.
,
2007
, “
Open-Loop Control of a MEMS Deformable Mirror for Large-Amplitude Wavefront Control
,”
J. Opt. Soc. Am.
,
24
(
12
), pp.
3827
3833
.10.1364/JOSAA.24.003827
7.
Preumont
,
A.
,
2004
,
Vibration Control of Active Structures: An Introduction
,
Kluwer Academic
,
New York
.
8.
Timoshenko
,
S.
, and
Woinowsky
,
S.
,
1959
,
Theory of Plates and Shells
,
2nd ed.
,
MacGraw-Hill Book Company
,
New York
.
9.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plate and Shells: Theory, Analysis, and Applications
,
Marcel Dekker
,
New York
.
10.
Ammari
,
K.
,
Mercier
,
D.
,
Regnier
,
V.
, and
Valein
,
J.
,
2012
, “
Spectral Analysis and Stabilization of a Chain of Serially Connected Euler-Bernoulli Beam and Strings
,”
Commun. Pure Appl. Anal.
,
11
(
2
), pp.
785
807
.10.3934/cpaa.2012.11.785
11.
Aoustin
,
Y.
,
Fliess
,
M.
,
Mounier
,
H.
,
Rouchon
,
P.
, and
Rudolph
,
J.
,
1997
, “
Theory and Practice in the Motion Planning and Control of a Flexible Robot Arm Using Mikusinski Operators
,”
Proceedings of the Fifth IFAC Symposium on Robot Control
, pp.
287
293
.
12.
Bensoussan
,
A.
,
Da Prato
,
G.
,
Delfor
,
M.
, and
Mitter
,
S. K.
,
2006
,
Representation and Control of Infinite-Dimensional Systems
,
Birkhauser
,
Boston, MA
.
13.
Krstić
,
M.
, and
Smyshyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
New York
.
14.
Lasiecka
,
I.
, and
Triggiani
,
R.
,
2000
,
Control Theory for Partial Differential Equations: Continuous and Approximation Theories
,
Cambridge University
,
Cambridge, UK
.
15.
Meurer
,
T.
,
Thull
,
D.
, and
Kugi
,
A.
,
2008
, “
Flatness-Based Tracking Control of a Piezoactuated Euler-Bernoulli Beam With Non-Collocated Output Feedback: Theory and Experiments
,”
Int. J. Control
,
81
(
3
), pp.
473
491
.10.1080/00207170701579429
16.
Rudolph
,
J.
,
2003
,
Flatness Based Control of Distributed Parameter Systems
,
Shaker-Verlag
,
Aachen, Germany
.
17.
Ammari
,
K.
, and
Tucsnak
,
M.
,
2000
, “
Stabilization of Bernoulli-Euler Beams by Means of a Pointwise Feedback Force
,”
SIAM J. Control Optim.
,
39
(
4
), pp.
1160
1181
.10.1137/S0363012998349315
18.
Conrad
,
F.
,
1990
, “
Stabilization of Beam by Pointwise Feedback Control
,”
SIAM J. Control Optim.
,
28
(
2
), pp.
423
437
.10.1137/0328023
19.
Chen
,
G.
,
Delfour
,
M. C.
,
Krall
,
A.
, and
Payre
,
G.
,
1987
, “
Modeling, Stabilization and Control of Serially Connected Beams
,”
SIAM J. Control Optim.
,
25
(
3
), pp.
526
546
.10.1137/0325029
20.
Le Gall
,
P.
,
Prieur
,
C.
, and
Rosier
,
L.
,
2007
, “
Output Feedback Stabilization of a Clamped-Free Beam
,”
Int. J. Control
,
80
(
8
), pp.
1201
1216
.10.1080/00207170601165097
21.
Liu
,
K.
,
Huang
,
F.
, and
Chen
,
G.
,
1989
, “
Exponential Stability Analysis of a Chain of Coupled Vibrating Strings With Dissipative Linkage
,”
SIAM J. Appl. Math.
,
33
(
1
), pp.
1
28
.
22.
Rebarber
,
R.
,
1995
, “
Exponential Stability of Coupled Beam With Dissipative Joints: A Frequency Domain Approach
,”
SIAM J. Control Optim.
,
33
(
1
), pp.
1
28
.10.1137/S0363012992240321
23.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
,
1995
, “
Flatness and Defect of Nonlinear System Introductory Theory and Examples
,”
Int. J. Control
,
61
, pp.
1327
1361
.10.1080/00207179508921959
24.
Lévine
,
J.
,
2009
,
Analysis and Control of Nonlinear Systems: A Flatness-Based Approach
,
Springer-Verlag
,
Berlin
.
25.
Laroche
,
B.
,
Martin
,
P.
, and
Rouchon
,
P.
,
2000
, “
Motion Planning for the Heat Equation
,”
Int. J. Robust Nonlinear Control
,
10
, pp.
629
643
.10.1002/1099-1239(20000715)10:8<629::AID-RNC502>3.0.CO;2-N
26.
Lynch
,
A. F.
, and
Rudolph
,
J.
,
2002
, “
Flatness-Based Boundary Control of a Class of Quasilinear Parabolic Distributed Parameter Systems
,”
Int. J. Control
,
75
(
15
), pp.
1219
1230
.10.1080/00207170210163640
27.
Meurer
,
T.
, and
Kugi
,
A.
,
2009
, “
Tracking Control for Boundary Controlled Parabolic PDEs With Varying Parameters: Combining Backstepping and Differential Flatness
,”
Automatica
,
45
, pp.
1182
1194
.10.1016/j.automatica.2009.01.006
28.
Petit
,
N.
,
Rouchon
,
P.
,
Boueih
,
J. M.
,
Guerin
,
F.
, and
Pinvidic
,
P.
,
2002
, “
Control of an Industrial Polymerization Reactor Using Flatness
,”
Int. J. Control
,
12
(
5
), pp.
659
665
.
29.
Badkoubeh
,
A.
, and
Zhu
,
G.
,
2012
, “
Flatness-Based Deformation Control of a 1-Dimensional Microbeam With in-Domain Actuation
,” IECON’12, Montreal, Que, pp.
2301
2306
.
30.
Badkoubeh
,
A.
, and
Zhu
,
G.
,
2012
, “
Deformation Control of a 1-Dimensional Microbeam With in-Domain Actuation
,” CDC’12, Maui, Hawaii, pp.
3145
3150
.
31.
Polyanin
,
A. D.
,
2002
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
,
Chapman & Hall/CRC
,
New York
.
32.
Kovacs
,
G. T. A.
,
1998
,
Micromachined Transducers Sourcebook
,
McGraw-Hill
,
New York
.
33.
Diouf
,
A.
,
Legendre
,
A. P.
,
Stewart
,
J. B.
,
Bifano
,
T. G.
, and
Lu
,
Y.
,
2010
, “
Open-Loop Shape Control for Continuous Microelectromechanical System Deformable Mirror
,”
Appl. Opt.
,
49
(
31
), pp.
148
154
.10.1364/AO.49.00G148
34.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
,
2005
, “
Control of an Electrostatic MEMS Using Static and Dynamic Output Feedback
,”
ASME J. Dyn. Syst., Meas., Control
,
127
, pp.
443
450
.10.1115/1.1985443
35.
Zhu
,
G.
,
2011
, “
Electrostatic MEMS: Modelling, Control, and Applications
,”
Advances in the Theory of Control, Signals and Systems With Physical Modeling
, Vol.
407
(Lecture Notes in Control and Information Sciences),
J.
Lévine
and
P.
Mullhaupt
, eds.,
Springer-Verlag
,
Berlin
, pp.
113
123
.
36.
Senturia
,
S. D.
,
2002
,
Microsystem Design
,
Kluwer Academic Publishers
,
Norwell, MA
.
37.
Lasiecka
,
I.
,
2002
,
Mathematical Control Theory of Coupled PDEs
,
SIAM
,
Philadelphia, PA
.
38.
Cortez
,
R.
, and
Minion
,
M.
,
2000
, “
The Blob Projection Method for Immersed Boundary Problems
,”
J. Comput. Phys
,
161
, pp.
428
453
.10.1006/jcph.2000.6502
39.
Pederson
,
M.
,
2000
,
Functional Analysis in Applied Mathematics and Engineering
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
40.
Rodino
,
L.
,
1993
,
Linear Partial Differential Operators in Gevrey Spaces
,
World Scientific
,
River Edge, NJ
.
41.
Trefethen
,
L. N.
,
2000
,
Spectral Method in MATLAB
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.