A nonlinear distributed parameter system model governing the motion of a cable with an attached payload immersed in water is derived. The payload is subject to a drag force due to a constant water stream velocity. Such a system is found, for example, in deep sea oil exploration, where a crane mounted on a ship is used for construction and thus positioning of underwater parts of an offshore drilling platform. The equations of motion are linearized, resulting in two coupled, one-dimensional wave equations with spatially varying coefficients and dynamic boundary conditions of second order in time. The wave equations model the normal and tangential displacements of cable elements, respectively. A two degree of freedom controller is designed for this system with a Dirichlet input at the boundary opposite to the payload. A feedforward controller is designed by inverting the system using a Taylor-series, which is then truncated. The coupling is ignored for the feedback design, allowing for a separate design for each direction of motion. Transformations are introduced, in order to transform the system into a cascade of a partial differential equation (PDE) and an ordinary differential equation (ODE), and PDE backstepping is applied. Closed-loop stability is proven. This is supported by simulation results for different cable lengths and payload masses. These simulations also illustrate the performance of the feedforward controller.

References

References
1.
Krstic
,
M.
,
2009
,
Delay Compensation for Nonlinear, Adaptive, and PDE Systems
,
Birkhäuser
,
Boston, MA
.
2.
Wang
,
J.-M.
,
Guo
,
B.-Z.
, and
Krstic
,
M.
,
2011
, “
Wave Equation Stabilization by Delays Equal to Even Multiples of the Wave Propagation Time
,”
SIAM J. Control Optim.
,
49
, pp.
517
554
.10.1137/100796261
3.
Gerdts
,
M.
,
Greif
,
G.
, and
Pesch
,
H. J.
,
2008
, “
Numerical Optimal Control of the Wave Equation: Optimal Boundary Control of a String to Rest in Finite Time
,”
Math. Comput. Simul.
,
79
, pp.
1020
1032
.10.1016/j.matcom.2008.02.014
4.
Smyshlyaev
,
A.
,
Cerpa
,
E.
, and
Krstic
,
M.
,
2010
, “
Boundary Stabilization of a 1-D Wave Equation With In-Domain Antidamping
,”
SIAM J. Control Optim.
,
48
, pp.
4014
4031
.10.1137/080742646
5.
Wagner
,
M. O.
,
Meurer
,
T.
, and
Kugi
,
A.
,
2009
, “
Feedforward Control Design for a Semilinear Wave Equation
,”
Proc. Appl. Math. Mech.
,
9
(
1
), pp.
7
10
.10.1002/pamm.200910003
6.
Meurer
,
T.
, and
Kugi
,
A.
,
2011
, “
Tracking Control Design for a Wave Equation With Dynamic Boundary Conditions Modeling a Piezoelectric Stack Actuator
,”
Int. J. Robust Nonlinear Control
,
21
(
5
), pp.
542
562
.10.1002/rnc.1611
7.
Ge
,
S. S.
,
He
,
W.
,
How
,
B.
, and
Choo
,
Y. S.
,
2010
, “
Boundary Control of a Coupled Nonlinear Flexible Marine Riser
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1080
1091
.10.1109/TCST.2009.2033574
8.
He
,
W.
,
Ge
,
S. S.
,
Hang
,
C. C.
, and
Hong
,
K.-S.
,
2010
, “
Boundary Control of a Vibrating String Under Unknown Time-Varying Disturbance
,”
49th IEEE Conference on Decision and Control (CDC)
, pp.
2584
2589
.
9.
Chen
,
L.-Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
,
58
, pp.
91
116
.10.1115/1.1849169
10.
Wang
,
J.
, and
Li
,
Q.
,
2004
, “
Active Vibration Control Methods of Axially Moving Materials—A Review
,”
J. Vib. Control
,
10
(
4
), pp.
475
491
.10.1177/1077546304035605
11.
Nguyen
,
T.
, and
Egeland
,
O.
,
2004
, “
Stabilization of Towed Cables
,”
43rd IEEE Conference on Decision and Control, CDC
, Vol.
5
, pp.
5059
5064
.
12.
Nguyen
,
T. D.
, and
Egeland
,
O.
,
2004
, “
Observer Design for a Towed Seismic Cable
,”
Proceedings of the American Control Conference
, Vol.
3
, pp.
2233
2238
.
13.
How
,
B.
,
Ge
,
S. S.
, and
Choo
,
Y. S.
,
2011
, “
Control of Coupled Vessel, Crane, Cable, and Payload Dynamics for Subsea Installation Operations
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
208
220
.10.1109/TCST.2010.2041931
14.
Krstic
,
M.
,
2009
, “
Compensating a String PDE in the Actuation or Sensing Path of an Unstable ODE
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1362
1368
.10.1109/TAC.2009.2015557
15.
Nestegard, and Bone
,
2008
,
Modelling and Analysis of Marine Operations
,
Det Norske Veritas
,
Hovik, Norway
, No. DNV-RP-H103.
16.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
The MIT Press
,
Cambridge, MA
.
17.
Triantafyllou
,
M. S.
,
1984
, “
The Dynamics of Taut Inclined Cables
,”
Q. J. Mech. Appl. Math.
,
37
, pp.
421
440
.10.1093/qjmam/37.3.421
18.
Burgess
,
J. J.
, and
Triantafyllou
,
M. S.
,
1988
, “
The Elastic Frequencies of Cables
,”
J. Sound Vib.
,
120
(
1
), pp.
153
165
.10.1016/0022-460X(88)90340-9
19.
Papazoglou
, V
. J.
,
Mavrakos
,
S. A.
, and
Triantafyllou
,
M. S.
,
1990
, “
Non-Linear Cable Response and Model Testing in Water
,”
J. Sound Vib.
,
140
(
1
), pp.
103
115
.10.1016/0022-460X(90)90909-J
20.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
1975
,
Advanced Strength and Applied Elasticity
,
American Elsevier Publishing Company
,
New York
.
21.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
22.
Kharitonov
,
A.
, and
Sawodny
,
O.
,
2006
, “
Flatness-Based Feedforward Control for Parabolic Distributed Parameter Systems With Distributed Control
,”
Int. J. Control
,
79
(
7
), pp.
677
687
.10.1080/00207170600622858
23.
Lynch
,
A. F.
, and
Rudolph
,
J.
,
2002
, “
Flatness-Based Boundary Control of a Class of Quasilinear Parabolic Distributed Parameter Systems
,”
Int. J. Control
,
75
(
15
), pp.
1219
1230
.10.1080/00207170210163640
24.
Rudolph
,
J.
, and
Woittennek
,
F.
,
2006
, “
Trajektorienplanung für die Steuerung gewisser linearer Systeme mit verteilten Parametern (Trajectory Planning for the Control of some Linear Distributed Parameter Systems)
,”
Automatisierungstechnik
,
54
, pp.
228
239
.10.1524/auto.2006.54.5.228
25.
Craig
,
J. J.
,
1989
,
Introduction to Robotics: Mechanics and Control
,
2nd ed.
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA.
26.
Ruppel
,
T.
,
Zimmert
,
N.
,
Zimmermann
,
J.
, and
Sawodny
,
O.
,
2008
, “
Kinodynamic Planning—An Analytical Approximation With
Cn
Polynomials for Industrial Application
,”
IEEE International Conference on Control Applications, CCA
, pp.
528
533
.
27.
Petit
,
N.
, and
Rouchon
,
P.
,
2001
, “
Flatness of Heavy Chain Systems
,”
Control Optim.
,
40
, pp.
475
495
.10.1137/S0363012900368636
28.
Zhao
,
S.
, and
Xie
,
C.
,
2010
, “
Output-Feedback Stabilization of the Wave Equation With Spatially Varying Propagation Speed
,”
49th IEEE Conference on Decision and Control
.
29.
Küchler
,
S.
,
Mahl
,
T.
,
Neupert
,
J.
,
Schneider
,
K.
, and
Sawodny
,
O.
,
2011
, “
Active Control for an Offshore Crane Using Prediction of the Vessel's Motion
,”
IEEE/ASME Trans. Mechatron.
,
16
(
2
), pp.
297
309
.10.1109/TMECH.2010.2041933
30.
Küchler
,
S.
,
Eberharter
,
J. K.
,
Langer
,
K.
,
Schneider
,
K.
, and
Sawodny
,
O.
,
2011
, “
Heave Motion Estimation of a Vessel Using Accelerometer Measurements
,”
18th IFAC World Congress
, pp.
14742
14747
.
31.
Küchler
,
S.
,
Pregizer
,
C.
,
Eberharter
,
J. K.
,
Schneider
,
K.
, and
Sawodny
,
O.
,
2011
, “
Real-Time Estimation of a Ship's Attitude
,”
American Control Conference (ACC)
, pp.
2411
2416
.
32.
Smyshlyaev
,
A.
, and
Krstic
,
M.
,
2009
, “
Boundary Control of an Anti-Stable Wave Equation With Anti-Damping on the Uncontrolled Boundary
,”
Syst. Control Lett.
,
58
, pp.
617
623
.10.1016/j.sysconle.2009.04.005
33.
Susto
,
G. A.
, and
Krstic
,
M.
,
2010
, “
Control of PDE-ODE Cascades With Neumann Interconnections
,”
J. Franklin Inst.
,
347
(
1
), pp.
284
314
.10.1016/j.jfranklin.2009.09.005
You do not currently have access to this content.