This paper deals with state-feedback control of discrete-time linear jump systems. The random variable representing the system modes has a generalized Bernoulli distribution, which is equivalent to a Markov chain where the transition probability matrix has identical rows. Another assumption is about the availability of the mode to the controller. We derive necessary and sufficient linear matrix inequalities (LMI) conditions to design optimal H2 and H state-feedback controllers for the particular class of transition probabilities under consideration and subject to partial mode availability constraints or equivalently cluster availability constraints, which include mode-dependent and mode-independent designs as particular cases. All design conditions are expressed in terms of LMIs. The results are illustrated through a numerical example.

References

References
1.
Costa
,
O.
,
Fragoso
,
M.
, and
Marques
,
R.
,
2005
, “
Discrete-Time Markov Jump Linear Systems
,”
Probability and Its Applications
,
Springer-Verlag
,
New York
.
2.
Ji
,
Y.
, and
Chizeck
,
H. J.
,
1990
, “
Jump Linear Quadratic Control: Steady State Solution and Testable Conditions
,”
Control Theory Adv. Technol.
,
5
, pp.
289
319
.
3.
Costa
,
O. L. V.
,
do Val
,
J. B. R.
, and
Geromel
,
J. C.
,
1997
, “
A Convex Programming Approach to H2 Control of Discrete-Time Markovian Linear Systems
,”
Int. J. Control
,
66
, pp.
557
579
.10.1080/002071797224595
4.
do
Val
,
J. B. R.
, and
Basar
,
T.
,
1999
, “
Receding Horizon Control of Jump Linear Systems and a Macroeconomic Policy Problem
,”
J. Econ. Dyn. Control
,
23
, pp.
1099
1131
.10.1016/S0165-1889(98)00058-X
5.
de Souza
,
C.
,
2006
, “
Robust Stability and Stabilization of Uncertain Discrete-Time Markovian Jump Linear Systems
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
836
841
.10.1109/TAC.2006.875012
6.
do Val
,
J. B. R.
,
Geromel
,
J. C.
, and
Gonçalves
,
A. P. C.
,
2002
, “
The H2-Control for Jump Linear Systems: Cluster Observations of the Markov State
,”
Automatica
,
38
, pp.
343
349
.10.1016/S0005-1098(01)00210-2
7.
Boukas
,
E. K.
, and
Shi
,
P.
,
1997
, “
H Control for Discrete-Time Linear Systems With Markovian Jumping Parameters
,”
36th IEEE Conference on Decision and Control
,
San Diego, CA
, pp.
4134
4139
.
8.
Fragoso
,
M. D.
,
do Val
,
J. B. R.
, and
Pinto
Jr.,
D. L.
,
1995
, “
Jump Linear H Control: The Discrete-Time Case
,”
Control Theory Adv. Technol.
,
10
, pp.
1459
1474
.
9.
Shi
,
P.
,
Boukas
,
E. K.
, and
Agarwal
,
R. K.
,
1999
, “
Robust Control for Markovian Jumping Discrete-Time Systems
,”
Int. J. Syst. Sci.
,
8
, pp.
787
797
.10.1080/002077299291912
10.
Costa
,
O. L. V.
, and
do Val
,
J. B. R.
,
1996
, “
Full Information H Control for Discrete-Time Infinite Markov Jump Parameter Systems
,”
J. Math. Anal. Appl.
,
202
, pp.
578
603
.10.1006/jmaa.1996.0335
11.
Costa
,
O. L. V.
, and
Marques
,
R. P.
,
1998
, “
Mixed H2/H-Control of Discrete-Time Markovian Jump Linear Systems
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
95
100
.10.1109/9.654895
12.
Shi
,
P.
, and
Boukas
,
E.
,
1999
, “
Control of Markovian Jump Discrete-Time Systems With Norm Bounded Uncertainty and Unknown Delay
,”
IEEE Trans. Autom. Control
,
44
(
11
), pp.
2139
2144
.10.1109/9.802932
13.
Cao
,
Y. Y.
, and
Lam
,
J.
,
1999
, “
Stochastic Stabilizability and H Control for Discrete-Time Jump Linear Systems With Time Delay
,”
J. Franklin Inst.
,
336
(
8
), pp.
1263
1281
.10.1016/S0016-0032(99)00035-6
14.
Boukas
,
E. K.
,
2009
, “
H Control of Discrete-Time Markov Jump Systems With Bounded Transition Probabilities
,”
Opt. Control Appl. Methods
,
30
(
5
), pp.
477
494
.10.1002/oca.870
15.
Gonçalves
,
A. P. C.
,
Fioravanti
,
A. R.
, and
Geromel
,
J. C.
,
2012
, “
H Robust and Networked Control of Discrete-Time MJLS Through LMIs
,”
J. Franklin Inst
,
349
, pp.
2171
2181
.10.1016/j.jfranklin.2012.03.002
16.
Seiler
,
P.
, and
Sengupta
,
R.
,
2005
, “
An H∞ Approach to Networked Control
,”
IEEE Trans. Autom. Control
,
50
, pp.
356
364
.10.1109/TAC.2005.844177
17.
Ji
,
Y.
,
Chizeck
,
H. J.
,
Feng
,
X.
, and
Loparo
,
K. A.
,
1991
, “
Stability and Control of Discrete-Time Jump Linear Systems
,”
Control Theory Adv. Technol.
,
7
, pp.
247
270
.
18.
Fioravanti
,
A. R.
,
Gonçalves
,
A. P. C.
, and
Geromel
,
J. C.
,
2013
, “
Optimal H2 and H∞ Mode-Independent Filters for Generalized Bernoulli Jump Systems
,”
Int. J. Syst. Sci.
(in press).10.1080/00207721.2013.784373
19.
Geromel
,
J. C.
,
Gonçalves
,
A. P. C.
, and
Fioravanti
,
A. R.
,
2009
, “
Dynamic Output Feedback Control of Discrete-Time Markov Jump Linear Systems Through Linear Matrix Inequalities
,”
SIAM J. Control Optim.
,
48
, pp.
573
593
.10.1137/080715494
20.
Seiler
,
P.
, and
Sengupta
,
R.
,
2003
, “
A Bounded Real Lemma for Jump Systems
,”
IEEE Trans. Autom. Control
,
48
, pp.
1651
1654
.10.1109/TAC.2003.817010
21.
Castelli
,
M.
,
2002
.
Network Consultants Handbook
,
Cisco Press
,
Indianapolis, IN
.
You do not currently have access to this content.