In this paper, we investigate the attitude synchronization problem for multiple networked spacecraft, and the spacecraft agents are assumed to interact on an undirected and connected graph. We adopt a physically motivated PD-like attitude consensus scheme which takes Euler parameters or quaternions of the error orientation matrix between the spacecraft agents as the attitude deviation, resulting in nonlinear attitude coupling among the networked spacecraft agents and additionally multiple equilibria of the closed-loop networked system. The stability of the closed-loop networked system is shown by the Lyapunov stability analysis. To show the convergence of the attitude synchronization errors, we develop a new tool called cyclic constraint analysis. With this synthesis tool, we show that attitude synchronization is achieved without relying on any assumptions of the spacecraft orientations. Simulation study is presented to shed some light on the obtained results.

References

References
1.
Reynolds
,
C. W.
,
1987
, “
Flocks, Herds, and Schools: A Distributed Behavioral Model
,”
Comput. Graph.
,
21
(
4
), pp.
25
34
.10.1145/37402.37406
2.
Wang
,
P. K. C.
,
Hadaegh
,
F. Y.
, and
Lau
,
K.
,
1999
, “
Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft
,”
J. Guid. Control Dyn.
,
22
(
1
), pp.
28
35
.10.2514/2.4367
3.
Lee
,
D.
, and
Li
,
P. Y.
,
2007
, “
Passive Decomposition Approach to Formation and Maneuver Control of Multiple Rigid Bodies
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
662
677
.10.1115/1.2764507
4.
Ren
,
W.
,
2007
, “
Formation Keeping and Attitude Alignment for Multiple Spacecraft Through Local Interactions
,”
J. Guid. Control Dyn.
,
30
(
2
), pp.
633
638
.10.2514/1.25629
5.
Chung
,
S.-J.
,
Ahsun
,
U.
, and
Slotine
,
J.-J. E.
,
2009
, “
Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach
,”
J. Guid. Control Dyn.
,
32
(
2
), pp.
512
526
.10.2514/1.37261
6.
Lee
,
D.
, and
Spong
,
M. W.
,
2006
, “
Passive Bilateral Teleoperation With Constant Time Delay
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
269
281
.10.1109/TRO.2005.862037
7.
Chopra
,
N.
,
Spong
,
M. W.
, and
Lozano
,
R.
,
2008
, “
Synchronization of Bilateral Teleoperators With Time Delay
,”
Automatica
,
44
(
8
), pp.
2142
2148
.10.1016/j.automatica.2007.12.002
8.
Chung
,
S.-J.
, and
Slotine
,
J.-J. E.
,
2009
, “
Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
686
700
.10.1109/TRO.2009.2014125
9.
Rodriguez-Angeles
,
A.
, and
Nijmeijer
,
H.
,
2004
, “
Mutual Synchronization of Robots Via Estimated State Feedback: A Cooperative Approach
,”
IEEE Trans. Control Syst. Technol.
,
12
(
4
), pp.
542
554
.10.1109/TCST.2004.825065
10.
Cheah
,
C. C.
,
Hou
,
S. P.
, and
Slotine
,
J.-J. E.
,
2009
, “
Region-Based Shape Control for a Swarm of Robots
,”
Automatica
,
45
(
10
), pp.
2406
2411
.10.1016/j.automatica.2009.06.026
11.
Meng
,
Z.
,
Ren
,
W.
, and
You
,
Z.
,
2010
, “
Distributed Finite-Time Attitude Containment Control for Multiple Rigid Bodies
,”
Automatica
,
46
(
12
), pp.
2092
2099
.10.1016/j.automatica.2010.09.005
12.
Dimarogonas
,
D. V.
,
Tsiotras
,
P.
, and
Kyriakopoulos
,
K. J.
,
2006
, “
Laplacian Cooperative Attitude Control of Multiple Rigid Bodies
,”
Proceedings of the IEEE International Symposium on Intelligent Control
,
Munich, Germany
, pp.
3064
3069
.
13.
Ren
,
W.
,
2010
, “
Distributed Cooperative Attitude Synchronization and Tracking for Multiple Rigid Bodies
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
383
392
.10.1109/TCST.2009.2016428
14.
Li
,
Z.
, and
Duan
,
Z.
,
2011
, “
Distributed Adaptive Attitude Synchronization of Multiple Spacecraft
,”
Sci. China Technol. Sci.
,
54
(
8
), pp.
1992
1998
.10.1007/s11431-011-4475-0
15.
Du
,
H.
,
Li
,
S.
, and
Qian
,
C.
,
2011
, “
Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2711
2717
.10.1109/TAC.2011.2159419
16.
Sarlette
,
A.
,
Sepulchre
,
R.
, and
Leonard
,
N. E.
,
2009
, “
Autonomous Rigid Body Attitude Synchronization
,”
Automatica
,
45
(
2
), pp.
572
577
.10.1016/j.automatica.2008.09.020
17.
Smith
,
T. R.
,
Hanßmann
,
H.
, and
Leonard
,
N. E.
,
2001
, “
Orientation Control of Multiple Underwater Vehicles With Symmetry-Breaking Potentials
,”
In Proceedings of the 40th IEEE Conference on Decision and Control
,
Orlando, FL
, pp.
4598
4603
.
18.
VanDyke
,
M. C.
, and
Hall
,
C. D.
,
2006
, “
Decentralized Coordinated Attitude Control Within a Formation of Spacecraft
,”
J. Guid. Control Dyn.
,
29
(
5
), pp.
1101
1109
.10.2514/1.17857
19.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2009
, “
Attitude Synchronization of a Group of Spacecraft Without Velocity Measurements
,”
IEEE Trans. Autom. Control
,
54
(
11
), pp.
2642
2648
.10.1109/TAC.2009.2031567
20.
Igarashi
,
Y.
,
Hatanaka
,
T.
,
Fujita
,
M.
, and
Spong
,
M. W.
,
2007
, “
Passivity-Based 3D Attitude Coordination: Convergence and Connectivity
,”
Proceedings of the IEEE Conference on Decision and Control
,
New Orleans, LA
, pp.
2558
2565
.
21.
Igarashi
,
Y.
,
Hatanaka
,
T.
,
Fujita
,
M.
, and
Spong
,
M. W.
,
2009
, “
Passivity-Based Attitude Synchronization in SE(3)
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
1119
1134
.10.1109/TCST.2009.2014357
22.
Wang
,
H.
, and
Xie
,
Y.
,
2011
, “
On Attitude Synchronization of Multiple Rigid Bodies With Time Delays
,”
Proceedings of the 18th IFAC World Congress
,
Milan, Italy
, pp.
8774
8779
.
23.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2008
, “
Attitude Synchronization of a Spacecraft Formation Without Velocity Measurement
,”
Proceedings of the 47th IEEE Conference on Decision and Control
,
Cancun, Mexico
, pp.
3719
3724
.
24.
Lawton
,
J. R.
, and
Beard
,
R. W.
,
2002
, “
Synchronized Multiple Spacecraft Rotations
,”
Automatica
,
38
(
8
), pp.
1359
1364
.10.1016/S0005-1098(02)00025-0
25.
Ren
,
W.
,
2007
, “
Distributed Attitude Alignment in Spacecraft Formation Flying
,”
Int. J. Adapt. Control Signal Process.
,
21
(
2–3
), pp.
95
113
.10.1002/acs.916
26.
Wang
,
H.
, and
Xie
,
Y.
,
2011
, “
A New Analysis Tool for Attitude Synchronization of Multiple Spacecraft With Communication Delays
,”
Chinese Control Conference
,
Yantai, China
, pp.
4576
4581
.
27.
Meng
,
Z.
,
You
,
Z.
,
Li
,
G.
, and
Fan
,
C.
,
2010
, “
Cooperative Attitude Control of Multiple Rigid Bodies With Multiple Time-Varying Delays and Dynamically Changing Topologies
,”
Math. Probl. Eng.
,
2010
, p.
621594
.10.1155/2010/621594
28.
Jungnickel
,
D.
,
2008
,
Graphs, Networks and Algorithms
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
29.
Egeland
,
O.
, and
Godhavn
,
J.-M.
,
1994
, “
Passivity-Based Adaptive Attitude Control of a Rigid Spacecraft
,”
IEEE Trans. Autom. Control
,
39
(
4
), pp.
842
846
.10.1109/9.286266
30.
Hughes
,
P. C.
,
1986
,
Spacecraft Attitude Dynamics
,
John Wiley & Sons
,
New York
.
31.
Ickes
,
B. P.
,
1970
, “
A New Method for Performing Digital Control System Attitude Computations Using Quaternions
,”
AIAA J.
,
8
(
1
), pp.
13
17
.10.2514/3.5598
32.
Mesbahi
,
M.
, and
Egerstedt
,
M.
,
2010
,
Graph Theoretic Methods in Multiagent Networks
,
Princeton University Press
,
Princeton, NJ
.
33.
Chopra
,
N.
, and
Spong
,
M. W.
,
2006
, “
Passivity-Based Control of Multi-Agent Systems
,”
Advances in Robot Control, From Everyday Physics to Human-Like Movements
,
S.
Kawamura
and
M.
Svinin
, eds.,
Springer-Verlag
,
Berlin
, pp.
107
134
.
34.
Lozano
,
R.
,
Brogliato
,
B.
,
Egeland
,
O.
, and
Maschke
,
B.
,
2000
,
Dissipative Systems Analysis and Control
,
Spinger-Verlag
,
London
.
35.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Brewer
,
J. W.
,
1978
, “
Kronecker Products and Matrix Caculus in System Theory
,”
IEEE Trans. Circuits Syst.
,
CAS-25
(
9
), pp.
772
781
.10.1109/TCS.1978.1084534
37.
Wang
,
H.
, and
Xie
,
Y.
,
2012
, “
Task-Space Framework for Bilateral Teleoperation With Time Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
5
), p.
051010
.10.1115/1.4006215
38.
Chopra
,
N.
,
Spong
,
M. W.
,
Ortega
,
R.
, and
Barabanov
,
N. E.
,
2006
, “
On Tracking Performance in Bilateral Teleoperation
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
861
866
.10.1109/TRO.2006.878942
You do not currently have access to this content.