This paper studies the problem of designing robust switched filters for time-varying polytopic uncertain systems. The synthesis conditions for a set of filters under a min-switching rule are derived to guarantee globally asymptotical stability with optimized robust H performance. Specifically, the conditions are expressed as bilinear matrix inequalities (BMIs) and can be solved by linear matrix inequality (LMI) optimization techniques. The proposed approach utilizes a piecewise quadratic Lyapunov function to reduce the conservativeness of robust filtering methods based on single Lyapunov function, thus better H performance can be achieved. Both continuous and discrete-time robust filter designs are considered. To simplify filter implementation, a method to remove redundancy in min-switching filter members is also introduced. The advantages of the proposed robust switching filters are illustrated by several examples.

References

References
1.
Shamma
,
J. S.
, and
Athans
,
M.
,
1990
, “
Analysis of Gain Scheduled Control for Nonlinear Plants
,”
IEEE Trans. Autom. Control
,
35
(
8
), pp.
898
907
.10.1109/9.58498
2.
Rugh
,
W. J.
,
1991
, “
Analytical Framework for Gain Scheduling
,”
IEEE Control Syst. Mag.
,
11
, pp.
74
84
.
3.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
2004
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
4.
Becker
,
G.
, and
Packard
,
A.
,
1994
, “
Robust Performance of Linear Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback
,”
Syst. Control Lett.
,
23
, pp.
205
215
.10.1016/0167-6911(94)90006-X
5.
Wu
,
F.
,
Yang
,
X. H.
,
Packard
,
A.
, and
Becker
,
G.
,
1996
, “
Induced L2 Norm Control for LPV Systems With Bounded Parameter Variation Rates
,”
Int. J. Robust Nonlinear Control
,
6
(
9/10
), pp.
983
998
.10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
6.
Blanchini
,
F.
, and
Miani
,
S.
,
2003
, “
Stabilization of LPV Systems: State Feedback, State Estimation and Duality
,”
Proceedings of 42nd IEEE Conference on Decision and Control
, pp.
1492
1497
.
7.
Blanchini
,
F.
, and
Miani
,
S.
,
2010
, “
Gain Scheduling Versus Robust Control of LPV Systems: The Output Feedback Case
,”
Proceedings of American Control Conference
, pp.
3871
3876
.
8.
Fu
,
M.
,
de Souza
,
C. E.
, and
Xie
,
L.
,
1992
, “H
Estimation for Uncertain Systems
,”
Int. J. Robust Nonlinear Control
,
2
(
2
), pp.
87
105
.10.1002/rnc.4590020202
9.
Petersen
,
I. R.
, and
MacFarlane
,
D. C.
,
1994
, “
Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1971
1977
.10.1109/9.317138
10.
Geromel
,
J. C.
,
1999
, “
Optimal Linear Filtering Under Parameter Uncertainty
,”
IEEE Trans. Signal Process
,
47
(
1
), pp.
168
175
.10.1109/78.738249
11.
Geromel
,
J. C.
,
Bernussou
,
J.
,
Garcia
,
G.
, and
de Oliveira
,
M. C.
,
2000
, “
H2 and H Robust Filtering for Discrete-Time Linear Systems
,”
SIAM J. Control Optim.
,
38
(
5
), pp.
1353
1368
.10.1137/S0363012997327379
12.
Geromel
,
J. C.
, and
de Oliveira
,
M. C.
,
2001
, “
H2 and H Robust Filtering for Convex Bounded Uncertain Systems
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
100
107
.10.1109/9.898699
13.
Geromel
,
J. C.
,
de Oliveira
,
M. C.
, and
Bernussou
,
J.
,
2002
, “
Robust Filtering of Discrete-Time Linear Systems With Parameter Dependent Lyapunov Functions
,”
SIAM J. Control Optim.
,
41
(
3
), pp.
700
711
.10.1137/S0363012999366308
14.
Xie
,
L.
,
Lu
,
L.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2004
, “
Improved Robust H2 and H Filtering for Uncertain Discrete-Time Systems
,”
Automatica
,
40
, pp.
873
880
.10.1016/j.automatica.2004.01.003
15.
Duan
,
Z.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Mosca
,
E.
,
2006
, “
Robust H2 and H Filtering for Uncertain Linear Systems
,”
Automatica
,
42
(
7
), pp.
1919
1926
.10.1016/j.automatica.2006.06.004
16.
Peleties
,
P.
, and
Decarlo
,
R. A.
,
1991
, “
Asymptotic Stability of m-Switched Systems Using Lyapunov-Like Functions
,”
Proceedings of American Control Conference
, pp.
1679
1684
.
17.
Wicks
,
M. A.
,
Peleties
,
P.
, and
DeCarlo
,
R. A.
,
1994
, “
Construction of Piecewise Lyapunov Functions for Stabilizing Switched Systems
,”
Proceedings of 33rd IEEE Conference on Decision and Control
, pp.
3492
3497
.
18.
Ranzer
,
A.
, and
Johansson
,
M.
,
2000
, “
Piecewise Linear Quadratic Optimal Control
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
629
637
.10.1109/9.847100
19.
Ye
,
H.
,
Michel
,
A. N.
, and
Hou
,
L.
,
1998
, “
Stability Theory for Hybrid Dynamical Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
461
474
.10.1109/9.664149
20.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
475
482
.10.1109/9.664150
21.
Zhao
,
J.
, and
Hill
,
D. J.
,
2008
, “
On Stability, L2 Gain and H Control for Switching Systems
,”
Automatica
,
44
, pp.
1220
1232
.10.1016/j.automatica.2007.10.011
22.
Liberzon
,
D.
, and
Morse
,
A. S.
,
1999
, “
Benchmark Problems in Stability and Design of Switched Systems
,”
IEEE Control Syst. Mag.
,
19
(
5
), pp.
59
70
.10.1109/37.793443
23.
DeCarlo
,
R. A.
,
Branicky
,
M. S.
,
Pettersson
,
S.
, and
Lennartson
,
B.
,
2000
, “
Perspectives and Results on the Stability and Stabilizability of Hybrid Systems
,”
Proc. IEEE
,
88
(
7
), pp.
1069
1082
.10.1109/5.871309
24.
Sun
,
Z.
, and
Ge
,
S. S.
,
2011
,
Stability Theory of Switched Dynamical Systems
,
Springer
,
London
.
25.
Lin
,
H.
, and
Antsaklis
,
P. J.
,
2009
, “
Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results
,”
IEEE Trans. Autom. Control
,
54
, pp.
308
322
.10.1109/TAC.2008.2012009
26.
Deaecto
,
G. S.
,
Geromel
,
J. C.
, and
Daafouz
,
J.
,
2011
, “
Switched State-Feedback Control for Continuous Time-Varying Polytopic Systems
,”
Int. J. Control
,
84
(
9
), pp.
1500
1508
.10.1080/00207179.2011.608134
27.
Deaecto
,
G. S.
,
Geromel
,
J. C.
, and
Daafouz
,
J.
,
2011
, “
Dynamic Output Feedback H Control for Switched Linear Systems
,”
Automatica
,
47
, pp.
1713
1720
.10.1016/j.automatica.2011.02.046
28.
Duan
,
C.
, and
Wu
,
F.
,
2012
, “
Output-Feedback Control for Switched Linear Systems Subject to Actuator Saturation
,”
Int. J. Control
,
85
(
10
), pp.
1532
1545
.10.1080/00207179.2012.691611
29.
Zhang
,
W.
, and
Hu
,
J.
,
2008
, “
On Optimal Quadratic Regulation for Discrete-Time Switched Linear Systems
,”
International Workshop on Hybrid Systems: Computation and Control
, pp.
584
597
.
30.
Geromel
,
J. C.
,
Colaneri
,
P.
, and
Bolzern
,
P.
,
2008
, “
Dynamic Output Feedback Control of Switched Linear Systems
,”
IEEE Trans. Autom. Control
,
53
(
3
), pp.
720
733
.10.1109/TAC.2008.919860
You do not currently have access to this content.