Associated with automatic vehicle following system is the problem of the stability of a platoon of vehicles. The stability with mode constraint is the property of damping disturbances as they travel away from the source in the system. In this paper, a class of infinite-dimensional vehicle longitudinal following system with stochastic disturbance is analyzed. By applying geometrical analysis method, a lemma for analyzing the stability of generalized vector comparison inequalities with respect to the original systems is established. With the help of the lemma, some sufficient conditions for assuring the string exponential stability with mode constraint of the original system are obtained by applying vector Lyapunov function method. The obtained conditions are less conservative than the existing ones. A numerical example is given to show the effectiveness of the established conditions.

References

References
1.
Lee
,
G. D.
, and
Kim
,
S. W.
,
2002
, “
A Longitudinal Control System for a Platoon of Vehicles Using a Fuzzy-Sliding Mode Algorithm
,”
Mechatronics
,
12
(
1
), pp.
97
118
.10.1016/S0957-4158(00)00063-5
2.
Swaroop
,
D.
, and
Hedrick
,
J. K.
,
1996
, “
String Stability of Interconnected Systems
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
349
356
.10.1109/9.486636
3.
Chu
,
K. C.
,
1974
, “
Decentralized Control of High Speed Vehicle Strings
,”
Transp. Sci.
,
8
(
3
), pp.
361
383
.10.1287/trsc.8.4.361
4.
Barbieri
,
E.
,
1993
, “
Stability Analysis of a Class of Interconnected Systems
,”
J. Dyn. Syst., Meas., Control
,
115
(
3
), pp.
546
551
.10.1115/1.2899136
5.
Swaroop
,
D.
, and
Hedrick
,
J. K.
,
1999
, “
Constant Spacing Strategies for Platooning in Automated Highway Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
(
3
), pp.
462
470
.10.1115/1.2802497
6.
Zhang
,
J. Y.
,
Yang
,
Y. R.
, and
Zeng
,
J.
,
2000
, “
String Stability of Infinite Interconnected System
,”
Appl. Math. Mech.
,
21
(
7
), pp.
791
796
.10.1007/BF02428377
7.
Zhang
,
J. Y.
,
Suda
,
Y. R.
, and
Iwasa
,
T.
,
2004
, “
Vector Liapunov Function Approach to Longitudinal Control of Vehicles in a Platoon
,”
JSME Int. J.: Ser. C
,
47
(
2
), pp.
653
658
.10.1299/jsmec.47.653
8.
Ren
,
D. B.
,
Zhang
,
J. Y.
, and
Sun
,
L. F.
,
2007
, “
Stability Analysis of Vehicle Following System With Delays Based on Vector Liapunov Function
,”
J. Traffic Transp. Eng.
,
7
(
4
), pp.
89
92
(in Chinese).
9.
Shaw
,
E.
, and
Hedrick
,
J. K.
,
2007
, “
String Stability Analysis for Heterogeneous Vehicle Strings
,”
Proceedings of the 2007 American Control Conference
,
New York
, July 11–13.
10.
Wang
,
J.
,
Wu
,
X. B.
, and
Xu
,
Z. L.
,
2005
, “
String Stability of a Class of Interconnected Nonlinear System From the Input to State View
,”
Proceedings of the Fourth International Conference on Machine Learning and Cybernetics
,
Guangzhou, China
.
11.
Socha
,
L.
,
2004
, “
Stochastic Stability of Interconnected String Systems
,”
Chaos, Solitons Fractals
,
19
(
4
), pp.
949
955
.10.1016/S0960-0779(03)00266-2
12.
Wu
,
S.
, and
Deng
,
F. Q.
,
2008
, “
Decentralized State Feedback Adaptive Tracking for a Class of Stochastic Nonlinear Large-Scale Systems
,”
Proceedings of the 7th International Conference on Machine Learning and Cybernetics
, pp.
2287
2292
.
13.
Socha
,
L.
,
2000
, “
Exponential Stability of Singularly Perturbed Stochastic Systems
,”
IEEE Trans. Autom. Control
,
45
(
3
), pp.
576
580
.10.1109/9.847748
14.
Pant
,
A.
,
Seiler
,
P.
, and
Hedrick
,
J. K.
,
2002
, “
Mesh Stability of Look-Ahead Interconnected Systems
,”
IEEE Trans. Autom. Control
,
47
(
2
), pp.
403
407
.10.1109/9.983389
15.
Pant
,
A.
,
Seiler
,
P.
, and
Hedrick
,
K.
,
2001
, “
Mesh Stability of Look-Ahead Interconnected Systems
,”
Proceedings of the 40th IEEE Conference on Decision and Control
.
16.
Pant
,
A.
,
Seiler
,
P.
,
Koo
,
T. J.
, and
Hedrick
,
J. K.
,
2001
, “
Mesh Stability of Unmanned Aerial Vehicle Clusters
,”
Proceedings of American Control Conference
.
17.
Zhang
,
J. Y.
,
2004
,
Comments on “Mesh Stability of Look-Ahead Interconnected Systems
,”
IEEE Trans. Autom. Control
,
49
(
5
), pp.
858
859
.10.1109/TAC.2004.828308
18.
Nersesov
,
S. G.
, and
Haddad
,
W. M.
,
2006
, “
On the Stability and Control of Nonlinear Dynamical Systems via Vector Lyapunov Functions
,”
IEEE Trans. Autom. Control
,
51
(
2
), pp.
203
215
.10.1109/TAC.2005.863496
19.
Aleksandrov
,
A. Y.
, and
Platonov
,
A. V.
,
2008
, “
Aggregation and Stability Analysis of Nonlinear Complex Systems
,”
Math. Anal. Appl.
,
342
(
2
), pp.
989
1002
.10.1016/j.jmaa.2007.12.061
20.
Khasminski
,
R. Z.
,
1980
,
Stochastic Stability of Differential Equations
,
Sijthoff & Noordhoff
,
Groningen, The Netherlands
.
You do not currently have access to this content.