In this work, approximations for state dependent delay differential equations (DDEs) are developed using Galerkin's approach. The DDE is converted into an equivalent partial differential equation (PDE) with a moving boundary, where the length of the domain dependents on the solution of the PDE. The PDE is further reduced into a finite number of ordinary differential equations (ODEs) using Galerkin's approach with time dependent basis functions. The nonlinear boundary condition is represented by a Lagrange multiplier, whose expression is derived in closed form. We also demonstrate the validity of the developed method by comparing the numerical solution of the ODEs to that of the original DDE.

References

References
1.
Driver
,
R.
,
1977
,
Ordinary and Delay Differential Equations
,
Springer-Verlag
,
New York
.
2.
Tsimring
,
L.
, and
Pikovsky
,
A.
,
2001
, “
Noise-Induced Dynamics in Bistable Systems With Delay
,”
Phys. Rev. Lett.
,
87
, p.
250602
.10.1103/PhysRevLett.87.250602
3.
Yeung
,
M.
, and
Strogatz
,
S.
,
1999
, “
Time Delay in the Kuramoto Model of Coupled Oscillators
,”
Phys. Rev. Lett.
,
82
(
3
), pp.
648
651
.10.1103/PhysRevLett.82.648
4.
Guillouzic
,
S.
,
L'Heureux
,
I.
, and
Longtin
,
A.
,
1999
, “
Small Delay Approximation of Stochastic Delay Differential Equations
,”
Phys. Rev. E
,
59
(
4
), pp.
3970
3982
.10.1103/PhysRevE.59.3970
5.
Kuang
,
Y.
,
1993
,
Delay Differential Equations: With Applications in Population Dynamics
,
Academic
,
Boston
.
6.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Synchronization in General Complex Dynamical Networks With Coupling Delays
,”
Physica A
,
343
, pp.
263
278
.10.1016/j.physa.2004.05.058
7.
Bocharov
,
G.
, and
Rihan
,
F.
,
2000
, “
Numerical Modeling in Biosciences Using Delay Differential Equations
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
183
199
.10.1016/S0377-0427(00)00468-4
8.
Richard
,
J.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
9.
Safonov
,
L.
,
Tomer
,
E.
,
Strygin
,
V.
,
Ashkenazy
,
Y.
, and
Havlin
,
S.
,
2002
, “
Multifractal Chaotic Attractors in a System of Delay-Differential Equations Modeling Road Traffic
,”
Chaos
,
12
(
4
), pp.
1006
1014
.10.1063/1.1507903
10.
Hartung
,
F.
,
Krisztin
,
T.
,
Walther
,
H.
, and
Wu
,
J.
,
2006
, “
Functional Differential Equations With State-Dependent Delays: Theory and Applications
,” Handbook of Differential Equations: Ordinary Differential Equations, 3, pp.
435
545
.
11.
Nayfeh
,
A.
, and
Mook
,
D.
,
1995
,
Nonlinear Oscillations
,
Wiley-VCH
,
New York
.
12.
Koto
,
T.
,
2004
, “
Method of Lines Approximations of Delay Differential Equations
,”
Comput. Math. Appl.
,
48
(
1–2
), pp.
45
59
.10.1016/j.camwa.2004.01.003
13.
Maset
,
S.
,
2003
, “
Numerical Solution of Retarded Functional Differential Equations as Abstract Cauchy Problems
,”
J. Comput. Appl. Math.
,
161
(
2
), pp.
259
282
.10.1016/j.cam.2003.03.001
14.
Khalil
,
H.
, and
Grizzle
,
J.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
New Jersey
.
15.
Sanders
,
J.
,
Verhulst
,
F.
, and
Murdock
,
J.
,
2007
,
Averaging Methods in Nonlinear Dynamical Systems
,
Springer-Verlag
,
New York
.
16.
Nayfeh
,
A.
,
1973
,
Perturbation Methods
, Vol.
6
,
Wiley
,
New York
.
17.
Morton
,
K.
and
Mayers
,
D.
,
2005
,
Numerical Solution of Partial Differential Equations: An Introduction
,
Cambridge University
Press, Cambridge, UK
.
18.
Carr
,
J.
,
1981
,
Applications of Centre Manifold Theory
,
Springer
,
New York.
19.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
20.
Ghosh
,
D.
,
Saha
,
P.
, and
Roy Chowdhury
,
A.
,
2007
, “
On Synchronization of a Forced Delay Dynamical System Via the Galerkin Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
928
941
.10.1016/j.cnsns.2005.08.006
21.
de Jesus Kozakevicius
,
A.
, and
Kalmár-Nagy
,
T.
,
2010
, “
Weak Formulation for Delay Equations
,”
9th Brazilian Conference on Dynamics, Control and Their Applications
.
22.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximation for Higher Order DelayDifferential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031004
.10.1115/1.4005931
23.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximations for Neutral Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
, p.
021014
.10.1115/1.4007446
24.
Wang
,
P.
, and
Wei
,
J.
,
1987
, “
Vibrations in a Moving Flexible Robot Arm
,”
J. Sound Vib.
,
116
(
1
), pp.
149
160
.10.1016/S0022-460X(87)81326-3
25.
Shampine
,
L.
,
2005
, “
Solving ODEs and DDEs With Residual Control
,”
Appl. Numer. Math.
,
52
, pp.
113
127
.10.1016/j.apnum.2004.07.003
26.
Kuang
,
Y.
, and
Smith
,
H.
,
1992
, “
Slowly Oscillating Periodic Solutions of Autonomous State-Dependent Delay Equations
,”
Topol. Methods Nonlinear Anal.
,
19
(
9
), pp.
855
872
.10.1016/0362-546X(92)90055-J
27.
Roussel
,
M.
,
2004
, “
Delay-Differential Equations
,” http://people.uleth.ca/roussel/nld/delay.pdf
You do not currently have access to this content.