In this paper, the problem of mixed additive/multiplicative model reduction for stable linear continuous-time systems is studied. To deal with nonsquare or nonminimum phase systems, the multiplicative error bound is constructed using spectral factorization technique. By virtue of the bounded real lemma and the projection lemma, a linear matrix inequality approach is proposed for mixed additive/multiplicative H model reduction, which can be implemented by the well-known cone complementary linearization method. Finally, two numerical examples are provided to demonstrate the effectiveness and advantages of the obtained results.

References

References
1.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice-Hall, NJ
.
2.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1995
,
Robust and Optimal Control
,
Prentice-Hall, Englewood Cliffs, NJ
.
3.
Obinata
,
G.
, and
Anderson
,
B. D. O.
,
2000
,
Model Reduction for Control System Design
,
Springer-Verlag
, London.
4.
Moore
,
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Auto. Contr.
,
26
(
1
), pp.
17
32
.10.1109/TAC.1981.1102568
5.
Green
,
M.
, and
Limbeer
,
D. J. N.
,
2012
,
Linear Robust Control
,
Dover Publications
,
Mineola, NY
.
6.
Glover
,
K.
,
1984
, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L∞-Error Bounds
,”
Int. J. Contr.
,
39
(
6
), pp.
1115
1193
.10.1080/00207178408933239
7.
Desai
,
U. B.
, and
Pal
,
D.
,
1984
, “
A Transformation Approach to Stochastic Model Reduction
,”
IEEE Trans. Auto. Contr.
,
29
(
12
), pp.
1097
1100
.10.1109/TAC.1984.1103438
8.
Green
,
M.
,
1988
, “
A Relative Error Bound for Balanced Stochastic Truncation
,”
IEEE Trans. Auto. Contr.
,
33
(
10
), pp.
961
965
.10.1109/9.7255
9.
Wang
,
W.
, and
Safonov
,
M. G.
,
1992
, “
Multiplicative-Error Bound for Balanced Stochastic Truncation Model Reduction
,”
IEEE Trans. Auto. Contr.
,
37
(
8
), pp.
1265
1267
.10.1109/9.151123
10.
Matson
,
J. B.
,
Lam
,
J.
,
Anderson
,
B. D. O.
, and
James
,
B.
,
1993
, “
Multiplicative Hankel Norm Approximation of Linear Multivariable System
,”
Int. J. Contr.
,
58
, pp.
129
167
.10.1080/00207179308922995
11.
Grigoriadis
,
K. M.
,
1995
, “
Optimal H∞ Model Reduction via Linear Matrix Inequalities: Continuous and Discrete-Time Cases
,”
Sys. Contr. Lett.
,
26
, pp.
321
333
.10.1016/0167-6911(95)00028-3
12.
Grigoriadis
,
K. M.
,
1997
, “
L2 and L2 − L∞ Model Reduction via Linear Matrix Inequalities
,”
Int. J. Contr.
,
68
, pp.
485
498
.10.1080/002071797223497
13.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
14.
Abbas
,
H. S.
, and
Werner
,
H.
,
2011
, “
Frequency-Weighted Discrete-Time LPV Model Reduction Using Structurally Balanced Truncation
,”
IEEE T. Contr. Syst. Tech.
,
19
(
1
), pp.
140
147
.10.1109/TCST.2010.2080274
15.
Gao
,
H.
,
Lam
,
J.
, and
Wang
,
C.
,
2006
, “
Model Simplification for Switched Hybrid Systems
,”
Sys. Contr. Lett.
,
55
, pp.
1015
1021
.10.1016/j.sysconle.2006.06.014
16.
Gao
,
H.
,
Lam
,
J.
,
Wang
,
C.
, and
Wang
,
Q.
,
2004
, “
Hankel Norm Approximation of Linear Systems With Time-Varying Delay: Continuous and Discrete Cases
,”
Int. J. Contr.
,
77
(
17
), pp.
1503
1520
.10.1080/00207170412331323641
17.
Gao
,
H.
,
Lam
,
J.
,
Wang
,
C.
, and
Xu
,
S.
,
2004
, “
H∞ Model Reduction for Discrete Time-Delay Systems: Delay-Independent and Dependent Approaches
,”
Int. J. Contr.
,
77
(
4
), pp.
321
335
.10.1080/00207170410001663525
18.
Ghafoor
,
A.
, and
Sreeram
,
V.
,
2008
, “
A Survey/Review of Frequency-Weighted Balanced Model Reduction Techniques
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
6
), p.
061004
.10.1115/1.2977468
19.
Ghafoor
,
A.
,
Sreeram
,
V.
, and
Treasure
,
R.
,
2007
, “
Frequency Weighted Model Reduction Technique Retaining Hankel Singular Values
,”
Asian J. Contr.
,
9
(
1
), pp.
50
56
.10.1111/j.1934-6093.2007.tb00304.x
20.
Huang
,
X.-X.
,
Yan
,
W.-Y.
, and
Teo
,
K.-L.
,
2001
, “
H2 Near-Optimal Model Reduction
,”
IEEE Trans. Auto. Contr.
,
46
(
8
), pp.
1279
1284
.10.1109/9.940934
21.
Li
,
P.
,
Lam
,
J.
,
Wang
,
Z.
, and
Date
,
P.
,
2011
, “
Positivity-Preserving H∞ Model Reduction for Positive Systems
,”
Automatica
,
47
(
7
), pp.
1504
1511
.10.1016/j.automatica.2011.02.032
22.
Louca
,
L. S.
,
Stein
,
J. L.
, and
Hulbert
,
G. M.
,
2010
, “
Energy-Based Model Reduction Methodology for Automated Modeling
,”
ASME J. Dyn. Sys., Meas., Control
,
132
(
6
), p.
061202
.10.1115/1.4002473
23.
Wang
,
Q.
,
Lam
,
J.
,
Xu
,
S.
, and
Zhang
,
L.
,
2006
, “
Delay-Dependent γ-Suboptimal H∞ Model Reduction for Neutral Systems With Time-Varying Delays
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(
2
), pp.
394
399
.10.1115/1.2196415
24.
Wang
,
S.-G.
, and
Wang
,
B.
,
2010
, “
Parameterization Theory of Balanced Truncation Method for Any Evenly Distributed RC Interconnect Circuits and Transmission Lines
,”
Automatica
,
46
(
3
), pp.
625
628
.10.1016/j.automatica.2010.01.015
25.
Wu
,
L.
, and
Ho
,
D. W. C.
,
2009
, “
Reduced-Order L2 − L∞ Filtering for a Class Nonlinear Switched Stochastic Systems
,”
IET Contr. Theory Appl.
,
3
(
5
), pp.
493
508
.10.1049/iet-cta.2008.0186
26.
Wu
,
L.
,
Shi
,
P.
,
Gao
,
H.
, and
Wang
,
C.
,
2006
, “
H∞ Model Reduction for Two-Dimensional Discrete State-Delayed Systems
,”
IEE Pr. Vis. Image Sig. Process.
,
153
(
6
), pp.
769
784
.10.1049/ip-vis:20050372
27.
Wu
,
L.
,
Shi
,
P.
,
Gao
,
H.
, and
Wang
,
J.
,
2009
, “
H∞ Model Reduction for Linear Parameter-Varying Systems With Distributed Delay
,”
Int. J. Contr.
,
82
(
3
), pp.
408
422
.10.1080/00207170802078156
28.
Wu
,
L.
,
Su
,
X.
,
Shi
,
P.
, and
Qiu
,
J.
,
2011
, “
Model Approximation for Discrete-Time State-Delay Systems in the T-S Fuzzy Framework
,”
IEEE Trans. Fuzzy Syst.
,
19
(
2
), pp.
366
378
.10.1109/TFUZZ.2011.2104363
29.
Wu
,
L.
, and
Zheng
,
W.-X.
,
2009
, “
Weighted H∞ Model Reduction for Linear Switched Systems With Time-Varying Delay
,”
Automatica
,
45
(
1
), pp.
186
193
.10.1016/j.automatica.2008.06.024
30.
Xu
,
S.
, and
Chen
,
T.
,
2003
, “
H∞ Model Reduction in the Stochastic Framework
,”
SIAM J. Contr. Optimiz.
,
42
(
4
), pp.
1293
1309
.10.1137/S0363012902403109
31.
Xu
,
S.
, and
Lam
,
J.
,
2003
, “
H∞ Model Reduction for Discrete-Time Singular Systems
,”
Sys. Contr. Lett.
,
48
, pp.
121
133
.10.1016/S0167-6911(02)00279-7
32.
Xu
,
S.
,
Lam
,
J.
,
Huang
,
S.
, and
Yang
,
C.
,
2001
, “
H∞ Model Reduction for Linear Time-Delay Systems: Continuous-Time Case
,”
Int. J. Contr.
,
74
(
11
), pp.
1062
1074
.10.1080/00207170110052194
33.
Zadegan
,
A. H.
, and
Zilouchian
,
A.
,
2005
, “
Model Reduction of Large-Scale Discrete Plants With Specified Frequency Domain Balanced Structure
,”
ASME J. Dyn. Sys., Meas., Control
,
127
(
3
), pp.
486
498
.10.1115/1.1985436
34.
Zhang
,
L.
,
Boukas
,
E.-K.
, and
Shi
,
P.
,
2009
, “
H∞ Model Reduction for Discrete-Time Markov Jump Linear Systems With Partially Known Transition Probability
,”
Int. J. Contr.
,
82
(
2
), pp.
343
351
.10.1080/00207170802098899
35.
Zhang
,
L.
,
Boukas
,
E.-K.
, and
Shi
,
P.
,
2009
, “
μ-Dependent Model Reduction for Uncertain Discrete-Time Switched Linear Systems With Average Dwell Time
,”
Int. J. Contr.
,
82
(
2
), pp.
378
388
.10.1080/00207170802126856
36.
Zhang
,
L.
,
Huang
,
B.
, and
Lam
,
J.
,
2003
, “
H∞ Model Reduction of Markovian Jump Linear Systems
,”
Sys. Contr. Lett.
,
50
, pp.
103
118
.10.1016/S0167-6911(03)00133-6
37.
Zhang
,
L.
,
Shi
,
P.
,
Boukas
,
E.-K.
, and
Wang
,
C.
,
2008
, “
H∞ Model Reduction for Uncertain Switched Linear Discrete-Time Systems
,”
Automatica
,
44
, pp.
2944
2949
.10.1016/j.automatica.2008.03.025
38.
Glover
,
K.
,
1986
, “
Multiplicative Approximation of Linear Multivariable Systems With L∞ Error Bounds
,”
Proceedings of the 1986 American Control Conference
, pp.
1705
1709
.
39.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlin. Appr.
,
4
(
4
), pp.
421
448
.10.1002/rnc.4590040403
40.
Iwasaki
,
T.
, and
Skelton
,
R. E.
,
1994
, “
All Controllers for the General H∞ Control Problem: LMI Existence Conditions and State Space Formulas
,”
Automatica
,
30
, pp.
1307
1317
.10.1016/0005-1098(94)90110-4
41.
Ghaoui
,
L. E.
,
Oustry
,
F.
, and
AitRami
,
M.
,
1997
, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Auto. Contr.
,
42
, pp.
1171
1176
.10.1109/9.618250
42.
Löfberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,” Proceedings of the 2004
IEEE
International Symposium on Computer Aided Control System Design, pp.
284
289
.10.1109/CACSD.2004.1393890
43.
Toh
,
K. C.
,
Todd
,
M. J.
, and
Tütüncü
,
R. H.
,
1999
, “
SDPT3—A Matlab Software Package for Semidefinite Programming
,”
Optimiz. Meth. Soft.
,
11
(
1
), pp.
545
581
.10.1080/10556789908805762
44.
Safonov
,
M. G.
, and
Chiang
,
R. Y.
,
1988
, “
Model Reduction for Robust Control: A Schur Relative-Error Method
,”
Proceedings of the 1988 American Control Conference
, pp.
1685
1690
.
You do not currently have access to this content.