In the past several years, small satellites have taken on an increasingly important role as affordable technology demonstrators and are now being viewed as viable low-cost platforms for traditional spacecraft mission objectives. As such, the CubeSat standard (1 kg in a 10 cm cube) has been widely adopted for university-led development efforts even as it is embraced by traditional spacecraft developers, such as NASA. As CubeSats begin to take on roles traditionally filled by much larger spacecraft, the infrastructure for dynamics and controls testing must also transition to accommodate the different size and cost scaling associated with CubeSats. While air-bearing-based testbeds are commonly used to enable a variety of traditional ground testing and development for spacecraft, few existing designs are suitable for development of CubeSat-scale technologies, particularly involving multibody dynamics. This work describes Cornell University's FloatCube testbed, which provides a planar reduced-friction environment for multibody dynamics and controls technology development for spacecraft less than 6 kg and a 15 cm cube. The multimodule testbed consists of four free-floating air-bearing platforms with on-board gas supplies that allow the platforms to float over a glass surface without external attachments. Each of these platforms, or FloatCubes, can host CubeSat-sized payloads at widely ranging levels of development, from prototype components to full-scale systems. The FloatCube testbed has already hosted several successful experiments, proving its ability to provide an affordable reduced-friction environment to CubeSat-scale projects. This paper provides information on the system design, cost, performance, operating procedures, and applications of this unique, and increasingly relevant, testbed.

References

References
1.
Sakoda
,
D.
, and
Horning
,
J. A.
,
2002
, “
Overview of the NPS Spacecraft Architecture and Technology Demonstration Satellite, NPSAT1
,”
16th Annual AIAA/USU Conference on Small Satellites
,
Logan, UT, Paper No. SSC02-I-4
.
2.
Neeck
,
S. P.
,
Magner
,
T. J.
, and
Paules
,
G. E.
,
2005
, “
NASA's Small Satellite Missions for Earth Observation
,”
Acta Astronautica
,
56
(
1–2
), pp.
187
192
.10.1016/j.actaastro.2004.09.034
3.
Nugent
,
R.
,
Munakata
,
R.
,
Chin
,
A.
,
Coelho
,
R.
, and
Puig-Suari
,
J.
,
2008
, “
The CubeSat: The Picosatellite Standard for Research and Education
,”
AIAA Space 2008 Conference and Exposition
,
San Diego, CA, Paper No. AIAA 2008-7734
.
4.
Heidt
,
H.
,
Puig-Suari
,
J.
,
Moore
,
A. S.
,
Nakasuka
,
S.
, and
Twiggs
,
R. J.
,
2000
, “
CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation
,”
14th Annual AIAA/USU Conference on Small Satellites
,
Logan, UT
, Papaer No. SSC00-V-5.
5.
Nakaya
,
K.
,
Konoue
,
K.
,
Sawada
,
H.
,
Ui
,
K.
,
Okada
,
H.
,
Miyashita
,
N.
,
Iai
,
M.
,
Urabe
, I
.
,
Yamaguchi
,
N.
,
Kashiwa
,
M.
,
Omagari
,
K.
,
Morita
, I
.
, and
Matunaga
,
S.
,
2003
, “
Tokyo Tech CubeSat: CUTE-I—Design & Development of Flight Model and Future Plan
,”
21st Annual International Communications Satellite Systems Conference and Exhibit
,
Yokohama, Japan
, Paper No. AIAA 2003-2388.
6.
Falbel
,
G.
,
Puig-Sauri
,
J.
, and
Peczalski
,
A.
,
2002
, “
Sun Oriented and Powered, 3 Axis and Spin Stabilized CubeSats
,”
IEEE
Aerospace Conference Proceedings
,
Big Sky, MT
.10.1109/AERO.2002.1036864
7.
Rankin
,
D.
,
Kekez
,
D. D.
,
Zee
,
R. E.
,
Pranajaya
,
F. M.
,
Foisy
,
D. G.
, and
Beattie
,
A. M.
,
2005
, “
The CanX-2 Nanosatellite: Expanding the Science Abilities of Nanosatellites
,”
Acta Astronautica
,
57
, pp.
167
174
.10.1016/j.actaastro.2005.03.032
8.
Caillibot
,
E. P.
,
Grant
,
C. C.
, and
Kekez
,
D. D.
,
2005
, “
Formation Flying Demonstration Missions Enabled by CanX Nanosatellite Technology
,”
19th Annual AIAA/USU Conference on Small Satellites
,
Logan, UT
.
9.
Zeledon
,
R. A.
, and
Peck
,
M. A.
,
2011
, “
Electrolysis Propulsion for CubeSat-Scale Spacecraft
,”
AIAA SPACE 2011 Conference and Exposition
,
Long Beach, CA, Paper No. AIAA-2011-7134
.
10.
Thuot
,
P. J.
, and
Harbaugh
,
G. J.
,
1995
, “
Extravehicular Activity Training and Hardware Design Consideration
,”
Acta Astronautica
,
36
(
1
), pp.
13
26
.10.1016/0094-5765(95)00035-X
11.
Sharf
,
I.
,
Laumonier
,
B.
,
Persson
, M
.
,
Robert
,
J.
,
2008
, “
Control of a Fully-Actuated Airship for Satellite Emulation
,”
Video Proceedings of IEEE International Conference on Robotics and Automation
(
ICRA2008
),
Pasadena, CA
.10.1109/ROBOT.2008.4543542
12.
Schnurr
,
R.
,
O'Brien
,
M.
, and
Cofer
,
S.
,
1989
, “
The Goddard Space Flight Center (GSFC) Robotics Technology Testbed
,”
Proceedings of the NASA Conference on Space Telerobotics
,
Pasadena, CA
.
13.
Doebbler
,
J.
,
Davis
,
J. J.
,
Valasek
,
J.
, and
Junkins
,
J. L.
,
2008
, “
Mobile Robotic System for Ground Testing of Multi-Spacecraft Proximity Operations
,”
AIAA Modeling and Simulation Technologies Conference and Exhibit
,
Honolulu, HI, Paper No. AIAA 2008-6548
.
14.
Regehr
,
M. W.
,
Acikmese
,
A. B.
,
Ahmed
,
A.
,
Aung
,
M.
,
Bailey
,
R.
,
Bushnell
,
C.
,
Clark
,
K. C.
,
Hicke
,
A.
,
Lytle
,
B.
,
MacNeal
,
P.
,
Rasmussen
,
R. E.
,
Singh
,
G.
, and
Shields
,
J.
,
2004
, “
The Formation Control Testbed
,”
IEEE
Aerospace Conference, Pasadena, CA
, Paper No. 1396.10.1109/AERO.2004.1367641
15.
Schwartz
,
J. L.
,
Peck
,
M. A.
, and
Hall
,
C. D.
,
2003
, “
Historical Review of Air-Bearing Spacecraft Simulators
,”
AIAA J. Guidance, Control and Dynamics
,
26
(
4
), pp.
513
522
.10.2514/2.5085
16.
Okada
,
H.
,
Tsurumi
,
S.
,
Mori
,
O.
, and
Matsunaga
,
S.
,
2001
, “
Development and Fundamental Experiments of Ground Simulation System for Robo-Sat Clusters
,”
11th Workshop on Astrodynamics and Flight Mechanics
, Sagamihara, Japan, July 18–19, pp.
377
382
.
17.
Kitts
,
C. A.
, and
Twiggs
,
R. J.
,
1994
, “
The Satellite Quick Research Testbed (SQUIRT) Program
,”
8th AIAA/Utah State University Annual Conference on Small Satellites
,
Logan, UT
.
18.
Meissner
,
D. M.
,
2009
, “
A Three Degree of Freedom Test Bed for Nanosatellite and Cubesat Attitude Dynamics, Determination, and Control
,” M.S. thesis, Naval Postgraduate School, Monterey, CA, December.
19.
Agrawal
,
B.
, and
Rasmussen
,
R.
,
2001
, “
Air-Bearing-Based Satellite Attitude Dynamics Simulator for Control Software Research and Development
,” Hardware-in-the-Loop Testing VI, Proceedings of the
SPIE
Conference on Technologies for Synthetic Environments, Society of Photo-Optical Instrumentation Engineers,
Bellingham, WA
, pp.
204
214
.10.1117/12.438072
20.
Schwartz
,
J. L.
, and
Hall
,
C. D.
,
2003
, “
The Distributed Spacecraft Attitude Control System Simulator: Development, Progress, Plans
,”
NASA Space Flight Mechanics Symposium
,
Greenbelt, MD
.
21.
Schubert
,
H.
, and
How
,
J.
,
1997
, “
Space Construction: An Experimental Testbed to Develop Enabling Technologies
,” Proceedings of the Conference on Telemanipulator and Telepresence Technologies IV,
SPIE
, Bellingham, WA.10.1117/12.295583
22.
Miller
,
D.
,
Saenz-Otero
,
A.
,
Wertz
,
J.
,
Chen
,
A.
,
Berkowski
,
G.
,
Brodel
,
C.
,
Carlson
,
A.
,
Carpenter
,
D.
,
Chen
,
S.
,
Cheng
,
S.
,
Feller
,
D.
,
Jackson
,
S.
,
Pitts
,
B.
,
Perez
,
F.
,
Szuminski
,
J.
, and
Sell
,
S.
,
2000
SPHERES: A Testbed for Long Duration Satellite Formation Flying in Micro-Gravity Conditions
,”
Proceedings of the AAS/AIAA Space Flight Mechanics Meeting
,
Clearwater, FL, Paper No. AAS 00-110
.
23.
“Open Source Computer Vision Library
,” OpenCV, http://sourceforge.net/projects/opencvlibrary/
24.
“12 mm × 24 mm Flat Rectangular Air Bearing Specifications
,” New Way, http://newwayairbearings.com/Air-Bearings-Flat-Rectangular-12mmx24mm
25.
“Rapid Prototyping and Injection Molding Services
,” Quickparts, http://www.quickparts.com/
26.
Jones
,
L. L.
, and
Wilson
,
W. R.
,
2010
, “
Design Parameters and Validation for a Non-Contacting Flux-Pinned Docking Interface
,”
AIAA SPACE 2010 Conference & Exhibition
,
Anaheim, CA
, Paper No. AIAA 2010-8918.
27.
Wilson
,
W. R.
,
Shoer
,
J.
, and
Peck
,
M. A.
,
2009
, “
Demonstration of a Magnetic Locking Flux-Pinned Revolute Joint for Use on CubeSat-Standard Spacecraft
,”
AIAA Guidance, Navigation, and Control Conference
,
Chicago, IL
, Aug. 10–13.
28.
Jones
,
L. L.
, and
Peck
,
M. A.
,
2010
, “
Stability and Control of a Flux-Pinned Docking Interface for Spacecraft
,”
AIAA Guidance, Navigation, and Control Conference
,
Toronto, ON
, Canada, Aug. 2–5.
29.
Jones
,
L. L.
,
Wilson
,
W. R.
,
Gorsuch
,
J.
,
Shoer
,
J.
, and
Peck
,
M.
,
2011
, “
Flight Validation of a Multi-Degree-of-Freedom Flux-Pinning Spacecraft Model
,”
AIAA Guidance, Navigation, and Control Conference
,
Portland, OR
, Paper No. AIAA 2011-6704.
30.
Sorgenfrei
,
M. C.
,
Jones
,
L. L.
,
Joshi
,
S. S.
, and
Peck
,
M. A.
, “
Results From a Reconfigurable Testbed for Dynamics and Control of Flux-Pinned Spacecraft Formations
,”
AIAA J. of Spacecraft and Rockets
. (to be published).
You do not currently have access to this content.