This paper considers global output feedback stabilization of a class of upper-triangular nonlinear systems with multiple outputs. By coupling a finite-time convergent observer and a saturated homogeneous stabilizer, the global output feedback stabilization can be achieved without the homogeneous growth condition. The proposed techniques are also extended to more general complex nonlinear systems. Various examples, including a ball-and-beam mechanical system and a planar vertical takeoff and landing aircraft, are presented to illustrate the design.

References

References
1.
Barbu
,
C.
,
Sepulchre
,
R.
,
Lin
,
W.
, and
Kokotovic
,
P.
,
1997
, “
Global Asymptotic Stabilization for the Ball and Beam System
,”
Proc. of IEEE Conf. on Decision and Control
, San Diego, CA, pp.
2351
2355
.
2.
Frye
,
M. T.
,
Ding
,
D.
,
Qian
,
C.
, and
Li
,
S.
,
2010
, “
Fast Convergent Observer Design for Output Feedback Stabilization of a Planar Vertical Takeoff and Landing Aircraft
,”
IET Control Theory Appl.
,
4
, pp.
690
700
.10.1049/iet-cta.2009.0158
3.
Liu
,
R.
,
Li
,
S. H.
, and
Ding
,
S. H.
,
2011
, “
Nested Saturation Control for Overhead Crane System
,”
Trans. Inst. Meas. Control (London)
,
34
, pp.
862
875
.10.1177/0142331211423285
4.
Lin
,
W.
, and
Li
,
X.
,
1999
, “
Synthesis of Upper-Triangular Non-Linear Systems With Marginally Unstable Free Dynamics Using State-Dependent Saturation
,”
Int. J. Control
,
72
(
12
), pp.
1078
1086
.10.1080/002071799220434
5.
Teel
,
A. R.
,
1992
,
“Feedback Stabilization: Nonlinear Solution to Inherently Nonlinear Problems
,” Ph.D. thesis, University of California, Berkeley.
6.
Mazenc
,
F.
, and
Praly
,
L.
,
1996
, “
Adding Integrations, Saturated Controls, and Stabilization for Feedforward Systems
,”
IEEE Trans. Autom. Control
,
41
(
11
), pp.
1559
1578
.10.1109/9.543995
7.
Sepulchre
,
R.
,
Jankovic
,
M.
, and
Kokotovic
,
P. V.
,
1997
, “
Integrator Forwarding: A New Recursive Nonlinear Robust Design
,”
Automatica
,
33
(
5
), pp.
979
984
.10.1016/S0005-1098(96)00249-X
8.
Qian
,
C.
, and
Li
,
J.
,
2006
, “
Global Output Feedback Stabilization of Upper-Triangular Nonlinear Systems Using a Homogeneous Domination Approach
,”
Int. J. Robust Nonlinear Control
,
16
(
9
), pp.
441
463
.10.1002/rnc.1074
9.
Lin
,
W.
,
1995
, “
Bounded Smooth State Feedback and a Global Separation Principle for Non-Affine Nonlinear Systems
,”
Syst. Control Lett.
,
26
(
1
), pp.
41
53
.10.1016/0167-6911(94)00109-9
10.
Mazenc
,
F.
, and
Vivalda
,
J.
,
2002
, “
Global Asymptotic Output Feedback Stabilization of Feedforward Systems
,”
Eur. J. Control
,
8
, pp.
519
530
.10.3166/ejc.8.519-530
11.
Choi
,
H. L.
, and
Tae
,
L. J.
,
2005
, “
Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback
,”
IEEE Trans. Autom. Control
,
50
(
2
), pp.
255
257
.10.1109/TAC.2004.841886
12.
Polendo
,
J.
, and
Schrader
,
C.
,
2005
, “
Output Feedback Stabilization of Nonlinear Feedforward Systems Using Arbitrarily Bounded Control
,”
Proc. of 2005 American Control Conference
, pp.
4727
4729
.
13.
Frye
,
M. T.
,
Trevino
,
R.
, and
Qian
,
C.
,
2007
, “
Output Feedback Stabilization of Nonlinear Feedforward Systems Using Low Gain Homogeneous Domination
,”
Proc. of 2007 IEEE International Conference on Control and Automation
, pp.
422
427
.
14.
Qian
,
C.
, “
A Homogeneous Domination Approach for Global Output Feedback Stabilization of a Class of Nonlinear Systems
,”
Proc. of 2005 American Control Conference
, pp.
4708
4715
.
15.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.10.1109/9.668834
16.
Hong
,
Y.
,
Huang
,
J.
, and
Xu
,
Y.
,
2001
, “
On an Output Feedback Finite-Time Stabilization Problem
,”
IEEE Trans. Autom. Control
,
46
(
2
), pp.
305
309
.10.1109/9.905699
17.
Li
,
J.
,
Qian
,
C.
, and
Frye
,
M.
, “
A Dual Observer Design for Global Output Feedback Stabilization of Nonlinear Systems With Low-Order and High-Order Nonlinearities
,”
Proc. of IEEE Conference on Decision and Control
.
18.
Ding
,
S.
,
Qian
,
C.
, and
Li
,
S.
,
2010
, “
Global Stabilization of a Class of Feedforward Systems With Lower-Order Nonlinearities
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
691
696
.10.1109/TAC.2009.2037455
19.
Mazenc
,
F.
,
1997
, “
Stabilization of Feedforward Systems Approximated by a Non-linear Chain of Integrators
,”
Syst. Control Lett.
,
32
, pp.
223
229
.10.1016/S0167-6911(97)00091-1
You do not currently have access to this content.