Optimization techniques have been applied to neuron models for a variety of purposes, including control of neuron firing rates and minimizing input stimulus current magnitudes. Optimal control is used to minimize a quantity of interest; often, the time or energy needed to complete an objective. Rather than attempting to control or modify neuron dynamics, this paper demonstrates that optimal control can be used to obtain an optimal input stimulus current i*(t) which causes a six dimensional Hodgkin–Huxley type neuron model to approximate a specified reference membrane voltage. The reference voltages considered in this paper consist of one or more action potentials as evoked by an input current i(t). In the described method, the user prescribes a balance of low squared integral of input stimulus current (input stimulus “energy”) and accurate tracking of the original reference voltage. In a previous work, the authors applied this approach to a reduced order neuron model. This paper demonstrates the applicability of this technique to biologically plausible higher dimensional conductance based neuron models. For each investigated neuron response, the method discovered optimal input stimuli current i*(t) having a lower energy than the original i(t), while still providing accurate tracking of the reference voltage.

References

References
1.
Sengupta
,
B.
,
Stemmler
,
M.
,
Laughlin
,
S. B.
, and
Niven
,
J. E.
,
2010
, “
Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates
,”
PLOS Comput. Biol.
,
6
(
7
), p.
e1000840
.10.1371/journal.pcbi.1000840
2.
Fohlmeister
,
J. F.
,
2009
, “
A Nerve Model of Greatly Increased Energy-Efficiency and Encoding Flexibility Over the Hodgkin-Huxley Model
,”
Brain Res.
,
1296
, pp.
225
233
.10.1016/j.brainres.2009.06.101
3.
Lewis
,
F. L.
, and
Syrmos
,
V. L.
,
1995
,
Optimal Control
,
2nd ed.
,
John Wiley and Sons
,
New York
.
4.
Danzl
,
P.
,
Hespanha
,
J.
, and
Moehlis
,
J.
,
2009
, “
Event-Based Minimum-Time Control of Oscillatory Neuron Models: Phase Randomization, Maximal Spike Rate Increase, and Desynchronization
,”
Biol. Cybern.
,
101
(
5–6
), pp.
387
399
.10.1007/s00422-009-0344-3
5.
Moehlis
,
J.
,
Shea-Brown
,
E.
, and
Rabitz
,
H.
,
2006
, “
Optimal Inputs for Phase Models of Spiking Neurons
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
4
), pp.
358
367
.10.1115/1.2338654
6.
Wang
,
J.
,
Costello
,
W.
, and
Rubin
,
J. E.
,
2011
, “
Tailoring Inputs to Achieve Maximal Neuronal Firing
,”
J. Math. Neurosci.
,
1
, p. 3.10.1186/2190-8567-1-3
7.
Ellinger
,
M.
,
Koelling
,
M. E.
,
Miller
,
D. A.
,
Severance
,
F. L.
, and
Stahl
,
J.
,
2011
, “
Exploring Optimal Current Stimuli That Provide Membrane Voltage Tracking in a Neuron Model
,”
Biol. Cybern.
,
104
(
3
), pp.
185
195
.10.1007/s00422-011-0427-9
8.
Izhikevich
,
E. M.
,
2007
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
,
MIT
,
Cambridge, MA
.
9.
Huang
,
C. W.
,
Tsai
,
J. J.
,
Huang
,
C. C.
, and
Wu
,
S. N.
,
2009
, “
Experimental and Simulation Studies on the Mechanisms of Levetiracetam-Mediated Inhibition of Delayed-Rectifier Potassium Current (KV3.1): Contribution to the Firing of Action Potentials
,”
J. Physiol. Pharmacol.
,
60
(
4
), pp.
37
47
.
10.
Hamprecht
,
B.
,
1977
, “
Structural, Electrophysiological, Biochemical, and Pharmacological Properties of Neuroblastoma-Glioma Cell Hybrids in Cell Culture
,”
Int. Rev. Cytol.
,
49
, pp.
99
170
.10.1016/S0074-7696(08)61948-8
11.
Ellinger
,
M. E.
,
2009
, “
Acquisition and Analysis of Biological Neural Network Action Potential Sequences
,” M.S. thesis, Western Michigan University, Kalamazoo, MI.
12.
Mohan
,
D. K.
,
Molnar
,
P.
, and
Hickman
,
J. J.
,
2006
, “
Toxin Detection Based on Action Potential Shape Analysis Using a Realistic Mathematical Model of Differentiated NG108-15 Cells
,”
Biosens. Bioelectron.
,
21
(
9
), pp.
1804
1811
.10.1016/j.bios.2005.09.008
13.
Akanda
,
N.
,
Molnar
,
P.
,
Stancescu
,
M.
, and
Hickman
,
J. J.
,
2009
, “
Analysis of Toxin-Induced Changes in Action Potential Shape for Drug Development
,”
J. Biomol. Screening
,
14
(
10
), pp.
1228
1235
.10.1177/1087057109348378
14.
Wu
,
S. N.
, and
Huang
,
C. W.
,
2009
, “
Simulation Studies on Mechanisms of Levetiracetam-Mediated Inhibition of IK(DR) (Huang et al. 2009)
,” http://senselab.med.yale.edu/modeldb/showmodel.asp?model=125154
15.
Shampine
,
L. F.
,
Kierzenka
,
J.
, and
Reichelt
,
M. W.
, “
Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB With bvp4c
,” http://www.mathworks.com
16.
Stigen
,
T.
,
Danzl
,
P.
,
Moehlis
,
J.
, and
Netoff
,
T.
,
2011
, “
Controlling Spike Timing and Synchrony in Oscillatory Neurons
,”
J. Neurophysiol.
,
105
(
5
), pp.
2074
2082
.10.1152/jn.00898.2011
You do not currently have access to this content.