Several strategies, in order to improve an actuator's control and to increase the bandwidth, consider the relationship between the valve's driving signal and the air flow rate. Such an approach to the control strategy takes advantage of the evaluation of the valve's characteristic parameter, known as sonic conductance. The sonic conductance can be measured following the procedure stated by the standard ISO 6358. Nevertheless, the measurement carried out according to this standard is very expensive in terms of time and air consumption. In this paper, an alternative method to evaluate the sonic conductance is presented. The method is based on a new practical approach: the sonic conductance is evaluated leaving the valve mounted on the actuator and using only the piston's position transducer. The steady state piston's motion allows us to determine the sonic conductance. The new approach allows us to get the conductance in a very short time, without the need to use a proper test bench and pressure transducers. Moreover, performing the measurements directly on the pneumatic axis allows us to characterize not only the valve but the duct connecting the valve to the actuator's chamber too.

References

References
1.
Messina
,
A.
,
Giannoccaro
,
N.
, and
Gentile
,
A.
,
2005
, “
Experimenting and Modelling the Dynamics of Pneumatic Actuators Controlled by the Pulse Width Modulation (PWM) Technique
,”
Mechatronics
,
15
, pp.
859
881
.10.1016/j.mechatronics.2005.01.003
2.
Hodgson
,
S.
,
Le
,
M.
,
Tavakoli
,
M.
, and
Pham
,
M. T.
,
2012
, “
Improved Tracking and Switching Performance of an Electro-Pneumatic Positioning System
,”
Mechatronics
,
22
, pp.
1
12
.10.1016/j.mechatronics.2011.10.007
3.
Carneiro
,
J.
, and
de Almeida
,
F.
,
2012
, “
A Neural Network Based Nonlinear Model of a Servopneumatic System
,”
ASME J. Dyn. Sys., Meas., Control
,
134
(
2
), p.
024502
.10.1115/1.4005360
4.
Shen, X., and Goldfarb, M.,
2007
, “
Simultaneous Force and Stiffness Control of a Pneumatic Actuator
,”
ASME J. Dyn. Sys., Meas., Control
,
129
(
4
), pp.
425
434
.10.1115/1.2745850
5.
Tsai
,
Y.
, and
Huang
,
A.
,
2008
, “
Multiple-Surface Sliding Controller for Pneumatic Servo Systems
,”
Mechatronics
,
18
, pp.
506
512
.10.1016/j.mechatronics.2008.03.006
6.
Xiang
,
F.
, and
Wikander
,
J.
,
2004
, “
Block-Oriented Approximate Feedback Linearization for Control of Pneumatic Actuator System
,”
Control Eng. Pract.
,
12
, pp.
387
399
.10.1016/S0967-0661(03)00104-7
7.
Al-Dakkan
,
K.
,
Barth
,
E.
, and
Goldfarb
,
M.
,
2006
, “
Dynamic Constraint-Based Energy-Saving Control of Pneumatic Servo Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(3), pp.
655
662
.10.1115/1.2232688
8.
Shen
,
X.
,
Zhang
,
J.
,
Barth
,
E.
, and
Goldfarb
,
M.
,
2006
, “
Nonlinear Model-Based Control of Pulse Width Modulated Pneumatic Servo Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(
3
), pp.
663
669
.10.1115/1.2232689
9.
Lee
,
H.
,
Choi
,
G.
, and
Choi
,
G.
,
2002
, “
A Study on Tracking Position Control of Pneumatic Actuators
,”
Mechatronics
,
12
, pp.
813
831
.10.1016/S0957-4158(01)00024-1
10.
Moore
,
P.
, and
Pu
,
J.
,
1996
,
IEE Colloquium Actuator Technology: Current Practice and New Developments
,
IEEE
,
London
.
11.
Brun
,
X.
,
Belgharbi
,
M.
,
Sesmat
,
S.
,
Thomasset
,
D.
, and
Scavarda
,
S.
,
1999
, “
Control of an Electropneumatic Actuator: Comparison Between Some Linear and Nonlinear Control Laws
,”
J. Syst. Control Eng.
,
213
, pp.
387
406
.10.1243/0959651991540232
12.
ISO
,
1989
,
ISO 6358 Pneumatic Fluid Power-Components Using Compressible Fluids Determination of Flow-Rate Characteristics
,
ISO
, Genève, Switzerland.
13.
Jungong
,
M.
,
Juan
,
C.
,
Ke
,
Z.
, and
Mitsuru
,
S.
,
2008
, “
Determination of Flow Rate Characteristics of Pneumatic Solenoid Valves Using an Isothermal Chamber
,”
Proceedings of the IEEE International Conference on Automation and Logistics
.
14.
De
las Heras
,
S.
,
2001
, “
A New Experimental Algorithm for the Evaluation of the True Sonic Conductance of Pneumatic Components Using the Characteristic Unloading Time
,”
Int. J. Fluid Power
,
2
(
1
), pp.
17
24
.
15.
Kawashima
,
K.
,
Ishii
,
Y.
,
Funaki
,
T.
, and
Kagawa
,
T.
,
2004
, “
Determination of Flow Rate Characteristics of Pneumatic Solenoid Valves Using an Isothermal Chamber
,”
ASME J. Fluids Eng.
,
126
(
2
), pp.
273
279
.10.1115/1.1667888
16.
Kuroshita
,
K.
, and
Oneyama
,
N.
,
2004
, “
Improvements of Test Method of Flow-Rate Characteristics of Pneumatic Components
,”
SICE Annual Conference, Sapporo
, Japan.
17.
Martinelli
,
M.
, and
Viktorov
,
V.
,
2010
, “
A Fast Method for Determining the Flow Conductance of Gas Microfluidic Devices
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121401
.10.1115/1.4003089
18.
ISO
,
2011
,
ISO/DIS 6358-2.3 Pneumatic Fluid Power – Determination of Flow-Rate Characteristics of Components—Part 2: Alternative Test Methods
,
ISO
, Genève, Switzerland.
19.
Wang
,
T.
,
Peng
,
G.
, and
Kagawa
,
T.
,
2010
, “
Determination of Flow-Rate Characteristics for Pneumatic Components Using a Quasi-Isothermal Tank With Temperature Compensation
,”
Meas. Sci. Technol.
,
21
, p.
065402
.10.1088/0957-0233/21/6/065402
20.
Wei
,
Z.
,
Qian
,
Y.
, and
Guo-Xiang
,
M.
,
2011
, “
Measurement of Flow Rate Characteristics of Pneumatic Components Based on the Dynamic Regularity of Polytropic Exponents
,”
Flow Meas. Instrum.
,
22
, pp.
331
337
.10.1016/j.flowmeasinst.2011.04.005
21.
Qian
,
Y.
,
Wei
,
Z.
, and
Guo-Xiang
,
M.
,
2011
, “
A New Algorithm for Identification of Flow-Rate Characteristics of Pneumatic Solenoid Valves—Based on the Isothermal Discharge Method
,” Proceedings of the 2011 International Conference on Fluid Power and Mechatronics
(FPM)
.10.1109/FPM.2011.6045735
22.
Qian
,
Y.
, and
Guo-Xiang
,
M.
,
2008
, “
Identification of the Flow-Rate Characteristics of a Pneumatic Valve by the Instantaneous Polytropic Exponent
,”
Meas. Sci. Technol.
,
19
, p.
057002
.10.1088/0957-0233/19/5/057002
23.
Szente
,
V.
, and
Vad
,
J.
,
2003
, “
A Semi-Empirical Model for Characterisation of Flow Coefficient for Pneumatic Solenoid Valves
,”
Period. Polytech. Mech. Eng.-Masinostr.
,
47
(
2
), pp.
131
142
.10.3311/pp.me.2003-2.04
24.
Olaby
,
O.
,
Brun
,
X.
,
Sesmat
,
S.
,
Redarce
,
T.
, and
Bideaux
,
E.
,
2005
, “
Characterization and Modeling of a Proportional Valve for Control Synthesis
,”
Proceedings of the 6th JFPS International Symposium on Fluid Power
.
25.
Belforte
,
G.
,
Raparelli
,
T.
, and
Sorli
,
M.
,
1984
, “
Modelli di Circuito con Attuatori Pneumatici
,”
AIMETA VII Congresso Nazionale
.
26.
Belforte
,
G.
,
1987
,
Pneumatica
,
Tecniche Nuove
,
Milano
.
27.
ISO
,
2003
,
ISO 8778 Pneumatic Fluid Power - Standard Reference Atmosphere
,
ISO
, Genève, Switzerland.
28.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
You do not currently have access to this content.