Semi-Markov jump linear systems (S-MJLSs) are more general than Markov jump linear systems in modeling practical systems. This paper investigates the H control problem for a class of semi-Markov jump linear systems with time-varying delays. The sojourn-time partition technique is firstly proposed for the delayed stochastic switching system. A sufficient condition for designing the state feedback controller is then established. Moreover, the sufficient condition is expressed as a set of linear matrix inequalities which can be readily solved. A numerical example illustrates the effectiveness of the proposed controller design technique.

References

References
1.
Boukas
,
E. K.
, and
Liu
,
Z. K.
,
2003
, “
Robust Stability and H∞ Control of Discrete-Time Jump Linear Systems With Time-Delay: An LMI Approach
,”
ASME J. Dyn. Sys., Meas. Control
,
125
(
2
), pp.
271
277
.10.1115/1.1570858
2.
Wen
,
J.
, and
Liu
,
F.
,
2011
, “
Receding Horizon Control for Constrained Markovian Jump Linear Systems With Bounded Disturbance
,”
ASME J. Dyn. Sys., Meas. Control
,
133
(
1
), p.
011005
.10.1115/1.4002709
3.
Shi
,
Y.
, and
Yu
,
B.
,
2011
, “
Robust Mixed H2/H∞ Control of Networked Control Systems With Random Time Delays in Both Forward and Backward Communication Links
,”
Automatica
,
47
(
4
), pp.
754
760
.10.1016/j.automatica.2011.01.022
4.
Shi
,
Y.
, and
Yu
,
B.
,
2009
, “
Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains
,”
IEEE Trans. Autom. Control
,
54
(
7
), pp.
1668
1674
.10.1109/TAC.2009.2020638
5.
Wu
,
N. E.
,
2004
, “
Coverage in Fault-Tolerant Control
,”
Automatica
,
40
(
4
), pp.
537
548
.10.1016/j.automatica.2003.11.015
6.
Mariton
,
M.
,
1990
,
Jump Linear Systems in Automatic Control
,
M. Dekker
,
New York
.
7.
Schwartz
,
C.
,
2003
, “
Control of Semi-Markov Jump Linear Systems With Application to the Bunch-Train Cavity Interaction
,” Ph.D. thesis,
Northwestern University
,
Evanston, IL
.
8.
Schwartz
,
C.
, and
Haddad
,
A.
,
2003
, “
Control of Jump Linear Systems Having Semi-Markov Sojourn Times
,” Proceedings of the
IEEE
Conference on Decision and Control, Vol.
3
, pp.
2804
2805
.10.1109/CDC.2003.1273049
9.
Huang
,
J.
, and
Shi
,
Y.
,
2011
, “
Stochastic Stability of Semi-Markov Jump Linear Systems: An LMI Approach
,” Proceedings of the
IEEE
Conference on Decision and Control, pp.
4668
4673
.10.1109/CDC.2011.6161313
10.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
, Vol.
15
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
11.
Zhou
,
K.
, and
Doyle
,
J.
,
1998
,
Essentials of Robust Control
, Vol.
104
,
Prentice Hall
,
Englewood Cliffs, NJ
.
12.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A.
, and
Chilali
,
M.
,
1994
, “
The LMI Control Toolbox
,” Proceedings of the
IEEE
Conference on Decision and Control, Vol.
3
, pp.
2038
2041
.10.1109/CDC.1994.411440
13.
Chen
,
W.-H.
,
Guan
,
Z.-H.
, and
Yu
,
P.
,
2004
, “
Delay-Dependent Stability and H∞ Control of Uncertain Discrete-Time Markovian Jump Systems With Mode-Dependent Time Delays
,”
Syst. Control Lett.
,
52
(
5
), pp.
361
376
.10.1016/j.sysconle.2004.02.012
14.
Boukas
,
E.
, and
Liu
,
Z.
,
2001
, “
Robust H∞ Control of Discrete-Time Markovian Jump Linear Systems With Mode-Dependent Time-Delays
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1918
1924
.10.1109/9.975476
15.
Gao
,
J.
,
Huang
,
B.
, and
Wang
,
Z.
,
2001
, “
LMI-Based Robust H∞ Control of Uncertain Linear Jump Systems With Time-Delays
,”
Automatica
,
37
(
7
), pp.
1141
1146
.10.1016/S0005-1098(01)00046-2
16.
Mirkin
,
B. M.
, and
Gutman
,
P.-O.
,
2003
, “
Output-Feedback Model Reference Adaptive Control for Continuous State Delay Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
125
(
2
), pp.
257
261
.10.1115/1.1570856
17.
Wang
,
D.-J.
,
2004
, “
A New Approach to Delay-Dependent H∞ Control of Linear State-Delayed Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
1
), pp.
201
205
.10.1115/1.1650382
18.
Li
,
H.
, and
Shi
,
Y.
,
2012
, “
Robust H∞ Filtering for Nonlinear Stochastic Systems With Uncertainties and Markov Delays
,”
Automatica
,
48
(
1
), pp.
159
166
.10.1016/j.automatica.2011.09.045
19.
Wang
,
Q.
,
Lam
,
J.
,
Xu
,
S.
, and
Zhang
,
L.
,
2006
, “
Delay-Dependent γ-Suboptimal H∞ Model Reduction for Neutral Systems With Time-Varying Delays
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(
2
), pp.
394
399
.10.1115/1.2196415
20.
Gao
,
H.
,
Chen
,
T.
, and
Lam
,
J.
,
2008
, “
A New Delay System Approach to Network-Based Control
,”
Automatica
,
44
(
1
), pp.
39
52
.10.1016/j.automatica.2007.04.020
21.
Zhang
,
L.
,
Boukas
,
E.
, and
Lam
,
J.
,
2008
, “
Analysis and Synthesis of Markov Jump Linear Systems With Time-Varying Delays and Partially Known Transition Probabilities
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2458
2464
.10.1109/TAC.2008.2007867
22.
Muliere
,
P.
,
Secchi
,
P.
, and
Walker
,
S. G.
,
2003
, “
Reinforced Random Processes in Continuous Time
,”
Stochastic Proc. Appl.
,
104
(
1
), pp.
117
130
.10.1016/S0304-4149(02)00234-X
23.
Boukas
,
E.
,
2006
,
Stochastic Switching Systems: Analysis and Design
,
Birkhauser
,
Boston, MA
.
24.
Svishchuk
,
A.
,
2000
,
Random Evolutions and Their Applications: New Trends
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
25.
Amri
,
I.
,
Soudani
,
D.
, and
Benrejeb
,
M.
,
2011
, “
Robust State-Derivative Feedback LMI-Based Designs for Time-Varying Delay System
,” Proceedings of the 2011 International Conference on Communications, Computing and Control Applications (
CCCA
), pp.
1
6
.10.1109/CCCA.2011.6031530
26.
Luan
,
X.
,
Liu
,
F.
, and
Shi
,
P.
,
2011
, “
Finite-Time Stabilization of Stochastic Systems With Partially Known Transition Probabilities
,”
ASME J. Dyn. Sys., Meas., Control
,
133
(1), p.
014504
.10.1115/1.4002716
You do not currently have access to this content.