A challenging problem on observer-based, integrated fault diagnosis and fault-tolerant control for linear systems subject to actuator faults and control input constraints is studied in this paper. An adaptive observer approach is used for the joint state-fault magnitude estimation, and a feedback controller is designed to stabilize the closed-loop system without violating the actuator limits in the presence of actuator faults. Matrix inequality conditions are provided for computation of design parameters of the observer and the feedback controller, and the admissible initial conditions and estimation errors are bounded by invariant ellipsoidal sets. The design results are closely related to the fault magnitude and variation rate, and a necessary condition on the admissible fault magnitudes dependent on the control limits is directly obtained from the design process. The proposed design framework allows a direct application of the pole placement method to obtain stabilization results. To improve the system performance, a nonlinear programming-based optimization algorithm is proposed to compute an optimized feedback gain, whereas the one obtained by pole placement can be taken as an initial feasible solution for nonlinear optimization. Numerical studies with two flight control systems demonstrate the effectiveness of proposed design techniques.

References

References
1.
Steinberg
,
M
.,
2005
, “
Historical Overview of Research in Reconfigurable Flight Control
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
219
(
4
), pp.
263
275
.10.1243/095441005X30379
2.
Zhang
,
Y. M.
, and
Jiang
,
J.
,
2008
, “
Bibliographical Review on Reconfigurable Fault-Tolerant Control Systems
,”
Ann. Rev. Control
,
32
(
2
), pp.
229
252
.10.1016/j.arcontrol.2008.03.008
3.
Hwang
, I
.
,
Kim
,
S.
,
Kim
,
Y.
, and
Seah
,
C. E.
,
2010
, “
A Survey of Fault Detection, Isolation, and Reconfiguration Methods
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
636
653
.10.1109/TCST.2009.2026285
4.
Jiang
,
J
.,
2005
, “
Fault-Tolerant Control Systems: An Introductory Overview
,”
Acta Automatica Sin.
,
31
(
1
), pp.
161
174
.
5.
Nett
,
C. N.
,
Jacobson
,
C. A.
, and
Miller
,
A. T.
,
1988
, “
An Integrated Approach to Controls and Diagnostics: The 4-Parameter Controller
,”
Proceedings of American Control Conference
,
Atlanta, GA
, pp.
824
835
.
6.
Jacobson
,
C. A.
, and
Nett
,
C. N.
,
1991
, “
An Integrated Approach to Controls and Diagnosis Using the Four Parameter Controller
,”
IEEE Control Syst. Mag.
,
11
(
6
), pp.
22
28
.10.1109/37.92987
7.
Tyler
,
M.
, and
Morari
,
M.
,
1994
, “
Optimal and Robust Design of Integrated Control and Diagnostic Modules
,”
Proceedings of the American Control Conference
,
Baltimore, MD
, vol. 2, pp.
2060
2064
.
8.
Zhang
,
Y. M.
, and
Jiang
,
J.
,
2001
, “
Integrated Active Fault-Tolerant Control Using IMM Approach
,”
IEEE Trans. Aerosp. Electron. Syst.
,
37
(
4
), pp.
1221
1235
.10.1109/7.976961
9.
Zhang
,
Y. M.
, and
Jiang
,
J.
,
2002
, “
An Active Fault-Tolerant Control System Against Partial Actuator Failures
,”
IEEE Proc. Control Theory Appl.
,
149
(
1
), pp.
95
104
.10.1049/ip-cta:20020110
10.
Zhang
,
X. D.
,
Parisini
,
T.
, and
Polycarpou
,
M. M.
,
2004
, “
Adaptive Fault-Tolerant Control of Nonlinear Uncertain Systems: An Information-Based Diagnostic Approach
,”
IEEE Trans. Automat. Control
,
49
(
8
), pp.
1259
1274
.10.1109/TAC.2004.832201
11.
Chen
,
W.
, and
Saif
,
M.
,
2007
, “
Adaptive Actuator Fault Detection, Isolation and Accommodation in Uncertain Systems
,”
Int. J. Control
,
80
(
1
), pp.
45
63
.10.1080/00207170600921011
12.
Weng
,
Z.
,
Patton
,
R. J.
, and
Cui
,
P.
,
2008
, “
Integrated Design of Robust Controller and Fault Estimator for Linear Parameter Varying Systems
,”
Proceedings of the 17th IFAC World Congress
,
Seoul, South Korea
, pp.
4535
4539
.
13.
Wang
,
H.
, and
Yang
,
G.-H.
,
2009
, “
Integrated Fault Detection and Control for LPV Systems
,”
Int. J. Robust Nonlinear Control
,
19
(
3
), pp.
341
363
.10.1002/rnc.1330
14.
Edwards
,
C.
,
Spurgeon
,
S. K.
, and
Patton
,
R. J.
,
2000
, “
Sliding Mode Observers for Fault Detection and Isolation
,”
Automatica
,
36
(
4
), pp.
541
553
.10.1016/S0005-1098(99)00177-6
15.
Sharma
,
R.
, and
Aldeen
,
M.
,
2011
, “
Fault, State, and Unknown Input Reconstruction in Nonlinear Systems Using Sliding Mode Observers
,”
J. Dyn. Syst., Measure., Control
,
133
, p.
051013
.10.1115/1.4004040
16.
Mondal
,
S.
,
Chakraborty
,
G.
, and
Bhattacharyya
,
K.
,
2008
, “
Robust Unknown Input Observer for Nonlinear Systems and Its Application to Fault Detection and Isolation
,”
J. Dyn. Syst., Measure., Control
,
130
, p.
044503
.10.1115/1.2936857
17.
Chen
,
W.
, and
Saif
,
M.
,
2007
, “
Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster Faults
,”
J. Dyn. Syst., Measure., Control
,
129
(
3
), pp.
352
356
.10.1115/1.2719773
18.
Caccavale
,
F.
,
Pierri
,
F.
, and
Villani
,
L.
,
2008
, “
Adaptive Observer for Fault Diagnosis in Nonlinear Discrete-Time Systems
,”
J. Dyn. Syst., Measure., Control
,
130
, p.
021005
.10.1115/1.2837310
19.
Frank
,
P. M.
,
Ding
,
S. X.
, and
Marcu
,
T.
,
2000
, “
Model-Based Fault Diagnosis in Technical Processes
,”
Trans. Inst. Measure. Control
,
22
(
1
), pp.
57
101
.10.1177/014233120002200104
20.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Patton
,
R. J.
,
2003
,
Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques
,
Springer-Verlag
,
London
.
21.
Wang
,
H.
, and
Daley
,
S.
,
1996
, “
Actuator Fault Diagnosis: An Adaptive Observer-Based Technique
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
1073
1078
.10.1109/9.508919
22.
Jiang
,
B.
,
Wang
,
J. L.
, and
Soh
,
Y. C.
,
2002
, “
An Adaptive Technique for Robust Diagnosis of Faults With Independent Effects on System Outputs
,”
Int. J. Control
,
75
(
11
), pp.
792
802
.10.1080/00207170210149934
23.
Zhang
,
K.
,
Jiang
,
B.
, and
Cocquempot
, V
.
,
2008
, “
Adaptive Observer-Based Fast Fault Estimation
,”
Int. J. Control, Autom., Syst.
,
6
(
3
), pp.
320
326
.
24.
Zhao
,
Z. Y.
,
Xie
,
W. F.
,
Hong
,
H.
, and
Zhang
,
Y. M.
,
2011
, “
A Disturbance-Decoupled Adaptive Observer and Its Application to Faulty Parameters Estimation of a Hydraulically Driven Elevator
,”
Int. J. Adapt. Control Signal Process.
,
25
(
6
), pp.
519
534
.10.1002/acs.1216
25.
Nobrega
,
E. G.
,
Abdalla
,
M. O.
, and
Grigoriadis
,
K. M.
,
2008
, “
Robust Fault Estimation of Uncertain Systems Using an LMI-Based Approach
,”
Int. J. Robust Nonlinear Control
,
18
(
18
), pp.
1657
1680
.10.1002/rnc.1313
26.
Zhang
,
H.
,
Shi
,
Y.
, and
Mehr
,
A. S.
,
2010
, “
Robust Energy-to-Peak Filtering for Networked Systems With Time-Varying Delays and Randomly Missing Data
,”
IET Control Theory Appl.
,
4
(
12
), pp.
2921
2936
.10.1049/iet-cta.2009.0243
27.
Zhang
,
H.
,
Shi
,
Y.
, and
Mehr
,
A. S.
,
2011
, “
Robust Weighted H∞ Filtering for Networked Systems With Intermittent Measurements of Multiple Sensors
,”
Int. J. Adapt. Control Signal Process.
,
25
(
4
), pp.
313
330
.10.1002/acs.1200
28.
Massoumnia
,
M. A.
,
1986
, “
A Geometric Approach to the Synthesis of Failure Detection Filters
,”
IEEE Trans. Autom. Control
,
31
(
9
), pp.
839
846
.10.1109/TAC.1986.1104419
29.
Shafai
,
B.
,
Pi
,
C. T.
, and
Nork
,
S.
,
2002
, “
Simultaneous Disturbance Attenuation and Fault Detection Using Proportional Integral Observers
,”
Proceedings of the American Control Conference
, Vol. 2, pp.
1647
1649
.
30.
Chang
,
J.-L.
,
2006
, “
Applying Discrete-Time Proportional Integral Observers for State and Disturbance Estimations
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
814
818
.10.1109/TAC.2006.875019
31.
Moreno
,
J. A.
,
2008
, “
Proportional-Integral Observer Design for Nonlinear Systems
,”
Proceedings of the 47th IEEE Conference on Decision and Control
, pp.
2308
2313
.
32.
Zhang
,
Y. M.
, and
Jiang
,
J.
,
2006
, “
Issues on Integration of Fault Diagnosis and Reconfigurable Control in Active Fault-Tolerant Control Systems
,”
Proceedings of the 6th IFAC Symposium on Fault Detection
,
Supervision and Safety for Technical Processes
, pp.
1513
1524
.
33.
Ding
,
S. X.
,
2009
, “
Integrated Design of Feedback Controllers and Fault Detectors
,”
Ann, Rev. Control
,
33
(
2
), pp.
124
135
.10.1016/j.arcontrol.2009.08.003
34.
Zhang
,
K.
,
Jiang
,
B.
, and
Shi
,
P.
,
2009
, “
Fast Fault Estimation and Accommodation for Dynamical Systems
,”
IET Control Theory Appl.
,
3
(
2
), pp.
189
199
.10.1049/iet-cta:20070283
35.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
PTR Prentice-Hall
,
Upper Saddle River, NJ
.
36.
Fan
,
J. H.
,
Zheng
,
Z. Q.
, and
Zhang
,
Y. M.
,
2011
, “
Stabilization of Observed-Based Actuator Fault-Tolerant Control Systems With Uncertainties, Actuator Saturation and Disturbances: An LMI Approach
,”
Proceedings of 23rd Canadian Congress of Applied Mechanics
,
Vancouver, BC, Canada
.
37.
Blanchini
,
F
.,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
38.
Fan
,
J. H.
,
Zhang
,
Y. M.
, and
Zheng
,
Z. Q.
,
2011
, “
Integrated Adaptive Fault Diagnosis and State-Feedback Control for Systems With Constant Actuator Faults and Control Input Constraints
,”
ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications (MESA’11)
,
Washington, DC
.
39.
Edwards
,
C
.,
2004
, “
A Comparison of Sliding Mode and Unknown Input Observers for Fault Reconstruction
,”
Proceedings of the 43rd IEEE Conference on Decision and Control
,
Atlantis, Paradise Island, Bahamas
, pp.
5279
5284
.
40.
Corless
,
M.
, and
Tu
,
J. A. Y.
,
1998
, “
State and Input Estimation for a Class of Uncertain Systems
,”
Automatica
,
34
(
6
), pp.
757
764
.10.1016/S0005-1098(98)00013-2
41.
Hu
,
T.
,
Lin
,
Z.
, and
Chen
,
B. M.
,
2002
, “
An Analysis and Design Method for Linear Systems Subject to Actuator Saturation and Disturbance
,”
Automatica
,
38
(
2
), pp.
351
359
.10.1016/S0005-1098(01)00209-6
42.
Hu
,
T.
,
Lin
,
Z.
, and
Chen
,
B. M.
,
2002
, “
Analysis and Design for Discrete-Time Linear Systems Subject to Actuator Saturation
,”
Syst. Control Lett.
,
45
(
2
), pp.
97
112
.10.1016/S0167-6911(01)00168-2
43.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM Studies in Applied Mathematics
,
Philadelphia, PA
.
44.
Caron
,
R. J.
,
Traynor
,
T.
, and
Jibrin
,
S.
,
2010
, “
Feasibility and Constraint Analysis of Sets of Linear Matrix Inequalities
,”
INFORMS J. Comput.
,
22
(
1
), pp.
144
153
.10.1287/ijoc.1090.0323
45.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
Athena Scientific
,
Belmont, MA
.
46.
Bazaraa
,
S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
,
2006
, Nonlinear Programming: Theory and Algorithms,
Wiley-Interscience
,
Hoboken, NJ
.10.1002/0471787779
47.
Luenberger
,
D. G.
, and
Ye
,
Y.
,
2008
,
Linear and Nonlinear Programming
,
Springer
,
New York.
48.
Vandenberghe
,
L.
,
Boyd
,
S.
, and
Wu
,
S.-P.
,
1998
, “
Determinant Maximization With Linear Matrix Inequality Constraints
,”
SIAM J. Matrix Anal. Appl.
,
19
(
2
), pp.
499
533
.10.1137/S0895479896303430
49.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
, pp.
308
313
.10.1093/comjnl/7.4.308
50.
Yu
,
X.
, and
Jiang
,
J.
,
2012
, “
Hybrid Fault-Tolerant Flight Control System Design against Partial Actuator Failures
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
871
886
.10.1109/TCST.2011.2159606
51.
Fan
,
J. H.
,
Zhang
,
Y. M.
, and
Zheng
,
Z. Q.
,
2012
, “
Hybrid Fault-Tolerant Flight Control Against Actuator Faults and Input Saturation: A Set-Invariance Approach
,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference
,
Minneapolis, MN
.
52.
Beard
,
R. W.
, and
Mclain
,
T. W.
,
2011
,
Small Unmanned Aircraft: Theory and Practice
,
Princeton University Press
,
Princeton, NJ
.
53.
Adams
,
R. J.
,
Buffington
,
J. M.
,
Sparks
,
A. G.
, and
Banda
,
S. S.
,
1994
,
Robust Multivariable Flight Control
,
Springer-Verlag
,
London
.
You do not currently have access to this content.