This paper investigates fundamental performance limitations in the control of a combine harvester's header height control system. There are two primary subsystem characteristics that influence the achievable bandwidth by affecting the open loop transfer function. The first subsystem is the mechanical configuration of the combine and header while the second subsystem is the electrohydraulic actuation for the header. The mechanical combine + header subsystem results in an input–output representation that is underactuated and has a noncollocated sensor/actuator pair. The electrohydraulic subsystem introduces a significant time delay. In combination, they each reinforce the effect of the other thereby exacerbating the overall system limitation of the closed loop bandwidth. Experimental results are provided to validate the model and existence of the closed loop bandwidth limitations that stem from specific system design configurations.

References

References
1.
Hobson
,
R. N.
, and
Bruce
,
D. M.
,
2002
, “
PM—Power and Machinery: Seed Loss When Cutting a Standing Crop of Oilseed Rape With Two Types of Combine Harvester Header
,”
Biosyst. Eng.
,
81
(
3
), pp.
281
286
.10.1006/bioe.2001.0011
2.
Glancey
,
J. L.
,
1997
, “
Analysis of Header Loss From Pod Stripper Combines in Green Peas
,”
J. Agric. Eng. Res.
,
68
(
1
), pp.
1
10
.10.1006/jaer.1996.0122
3.
Kaminski
,
T. L.
, and
Zoerb
,
G. C.
,
1965
, “
Automatic Header-Height Control for Grain Crops
,”
Trans. Am. Soc. Agric. Eng.
, 8(2), pp.
284
287
.
4.
Lopes
,
G. T.
,
Magalhães
,
P. S. G.
, and Nóbrega, E. G. O., 2002, “AE—Automation and Engineering Technologies:
Optimal Header Height Control System for Combine Harvesters
,”
Biosyst. Eng.
,
81
(
3
), pp.
261
272
.10.1006/bioe.2001.0016
5.
Xie
,
Y.
,
Alleyne
,
A.
,
Greer
,
A.
, and
Deneault
,
D.
,
2010
, “
Header Height Control of a Combine Harvester System
,” Proceeding of ASME Dynamic Systems and Control Conference (
DSCC
), Cambridge, MA.10.1115/DSCC2010-4088
6.
Xie
,
Y.
,
Alleyne
,
A. G.
,
Greer
,
A.
, and
Deneault
,
D.
,
2011
, “
Fundamental Limits in Combine Harvester Header Height Control
,”
Proceedings of the 2011 American Control Conference
,
San Francisco, CA
.
7.
Arai
,
H.
, and
Tachi
,
S.
,
1991
, “
Position Control of a Manipulator With Passive Joints Using Dynamic Coupling
,”
IEEE Trans. Rob. Autom.
,
7
(
4
), pp.
528
534
.10.1109/70.86082
8.
Spong
,
M.
,
Seth
,
H.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
John Wiley & Sons
,
New York
.
9.
Olsson
,
H.
,
Aström
,
K. J.
,
Canudas de Wit
,
C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
, pp.
176
795
.
10.
Lindner
,
D. K.
,
Reichard
,
K. M.
, and
Tarkenton
,
L. M.
,
1993
, “
Zeros of Modal Models of Flexible Structures
,”
IEEE Trans. Autom. Control
,
38
(
9
), pp.
1384
1388
.10.1109/9.237650
11.
Aström
,
K. J.
,
2000
, “
Limitations on Control System Performance
,”
Eur. J. Control
,
6
(
1
), pp.
2
20
.
12.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control Analysis and Design
,
John Wiley & Sons Ltd
,
West Sussex
.
13.
Stein
,
G.
,
2003
, “
Respect the Unstable
,”
IEEE Control Syst. Mag.
,
23
(
4
), pp.
12
25
.10.1109/MCS.2003.1213600
14.
Balas
,
G. J.
, and
Doyle
,
J. C.
,
1994
, “
Robustness and Performance Trade-Offs in Control Design for Flexible Structures
,”
IEEE Trans. Control Syst. Technol.
,
2
(
4
), pp.
352
361
.10.1109/87.338656
15.
Thibeault
,
N. M.
, and
Smith
,
R.
,
2001
, “
Fundamental Limits in Robustness and Performance for Unstable, Underactuated Systems
,”
IEEE Trans. Autom. Control
,
46
(
8
), pp.
1265
1278
.10.1109/9.940931
16.
Magyar
,
B.
,
Hős
,
C.
, and
Stépán
,
G.
,
2010
, “
Influence of Control Valve Delay and Dead Zone on the Stability of a Simple Hydraulic Positioning System
,”
Math. Probl. Eng.
,
2010
, p. 349489.10.1155/2010/349489
You do not currently have access to this content.