In this work, the dynamic behaviors of a complex pneumatic reducer valve have been studied through the pseudobond graph modeling technique. This modeling approach graphically describes the energy and mass flows among pneumatic valve components during real operational conditions. State equations have been derived from the pseudobond graph model and have been numerically solved by matlab-Simulink. To validate the accuracy of the model, simulation results are compared with the real data of an experimental setup and good agreements between them are reported. The main advantage of the proposed model over other conventional approaches such as fluid dynamics theories is that it provides a physical model which accurately predicts the system's dynamic responses without any need to run huge computer programs or establish expensive experimental setups.

References

References
1.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenburg
,
R. C.
,
2000
,
System Dynamics, Modelling and Simulation of Mechatronic Systems
,
John Wiley and Sons
,
New York
.
2.
Karnopp
,
D. C.
,
1983
, “
Alternative Bond Graph Causal Patterns and Equation Formulations for Dynamic Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
105
(
2
), pp.
58
63
.10.1115/1.3149645
3.
Thoma
,
J. U.
,
1990
,
Simulation by Bond Graph
,
Springer Verlag
,
Berlin
.
4.
Borutzky
,
W.
,
2010
,
Bond Graph Methodology, Development and Analysis of Multidisciplinary Dynamic System Models
,
Springer-Verlag
,
Berlin
.
5.
Thoma
,
J.
, and
Bouamama
,
B. O.
,
2000
,
Modelling and Simulation in Thermal and Chemical Engineering
,
Springer-Verlag
,
Berlin
.
6.
Afshari
,
H. H.
,
Zanj
,
A.
, and
Novinzadeh
,
A. B.
,
2010
, “
Dynamic Analysis of a Nonlinear Pressure Regulator Using Bond Graph Simulation Technique
,”
Simul. Model. Pract. Theory
,
18
, pp.
240
252
.10.1016/j.simpat.2009.11.001
7.
Zanj
,
A.
,
Karimi
,
H.
,
Gholi
,
A. J.
, and
Shafiee
,
M.
,
2012
, “
Dynamic Modeling of Indirect Hydro-Control Valve—Bondgraph Approach
,”
Simul. Model. Pract. Theory
,
28
, pp.
65
80
.10.1016/j.simpat.2012.05.009
8.
Dasgupta
,
K.
, and
Karmakar
,
R.
,
2002
, “
Dynamic Analysis of a Pilot Operated Pressure Relief Valve
,”
Simul. Model. Pract. Theory
,
10
, pp.
35
49
.10.1016/S1569-190X(02)00061-8
9.
Dasgupta
,
K.
, and
Karmakar
,
R.
,
2002
, “
Modelling and Dynamics of Single-Stage Pressure Relief Valve With Directional Damping
,”
Simul. Model. Pract. Theory
,
10
, pp.
51
67
.10.1016/S1569-190X(02)00059-X
10.
Dasgupta
,
K.
, and
Watton
,
J.
,
2005
, “
Dynamic Analysis of Proportional Solenoid Controlled Piloted Relief Valve by Bond Graph
,”
Simul. Model. Pract. Theory
,
13
, pp.
21
38
.10.1016/j.simpat.2004.08.002
11.
Shin
,
Y. C.
,
1991
, “
Static and Dynamic Characteristics of a Two Stage Pilot Relief Valve
,”
ASME J. Dyn. Sys., Meas., Control
,
113
(2)
, pp.
280
288
.10.1115/1.2896376
12.
Zung
,
P. S.
, and
Perng
,
M. H.
,
2002
, “
Nonlinear Dynamic Model of a Two-Stage Pressure Relief Valve for Designers
,”
ASME J. Dyn. Sys., Meas., Control
,
124
(1)
, pp.
62
66
.10.1115/1.1435363
13.
Maiti
,
R.
,
Saha
,
R.
, and
Watton
,
J.
,
2002
, “
The Static and Dynamic Characteristics of a Pressure Relief Valve With a Proportional Solenoid-Controlled Pilot Stage
,”
Proc. Inst. Mech. Eng., Part I
,
216
, pp.
143
156
.10.1243/0959651021541516
14.
Margolis
,
D. L.
, and
Yang
,
W. C.
,
1985
, “
Bond Graph Models for Fluid Networks Using Modal Approximation
,”
ASME J. Dyn. Sys., Meas., Control
,
107
(
3
), pp.
169
175
.10.1115/1.3140716
15.
Schoenau
,
J. G.
,
Burton
,
R. T.
, and
Kavanagh
,
G. P.
,
1990
, “
Dynamic Analysis of a Variable Displacement Pump
,”
ASME J. Dyn. Sys., Meas., Control
,
112
(1)
, pp.
122
132
.10.1115/1.2894129
16.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernandez
,
B. R.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Design
,
130
(
4
), p.
041102
10.1115/1.2885180.
17.
Li
,
P. Y.
, and
Ngwompo
,
R. F.
,
2005
, “
Power Scaling Bond Graph Approach to the Passification of Mechatronic Systems With Application to Electrohydraulic Valves
,”
ASME J. Dyn. Sys., Meas., Control
,
127
(
4
), pp.
633
641
.10.1115/1.2101848
18.
Gawthrop
,
P. J.
,
1999
, “
Thermal Modelling Using Mixed Energy and Pseudo Bond Graphs
,”
Proc. Inst. Mech. Eng., Part I
,
213
(
3
), pp.
201
216
.10.1243/0959651991540089
19.
Tan
,
J.
,
Stelson
,
K. A.
, and
Janni
,
K. A.
,
1994
, “
Compressible-Flow Modeling With Pseudo Bond Graphs
,”
ASME J. Dyn. Sys., Meas., Control
,
116
(
2
), pp.
272
280
.10.1115/1.2899220
20.
Zhu
,
Y.
, and
Barth
,
E. J.
,
2008
, “
Passivity-Based Impact and Force Control of a Pneumatic Actuator
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
2
), p.
024501
.10.1115/1.2837430
21.
Karnopp
,
D. C.
,
1978
, “
Pseudo Bond Graphs for Thermal Energy Transport
,”
ASME J. Dyn. Sys., Meas., Control
,
100
(
3
), pp.
165
169
.10.1115/1.3426363
22.
Karnopp
,
D. C.
,
1979
, “
State Variables and Pseudo Bond Graphs for Compressible Thermofluid Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
101
(
3
), pp.
201
204
.10.1115/1.3426425
You do not currently have access to this content.