This paper derives linear quadratic regulator (LQR) results for boundary-controlled parabolic partial differential equations (PDEs) via weak variations. Research on optimal control of PDEs has a rich 40-year history. This body of knowledge relies heavily on operator and semigroup theory. Our research distinguishes itself by deriving existing LQR results from a more accessible set of mathematics, namely weak-variational concepts. Ultimately, the LQR controller is computed from a Riccati PDE that must be derived for each PDE model under consideration. Nonetheless, a Riccati PDE is a significantly simpler object to solve than an operator Riccati equation, which characterizes most existing results. To this end, our research provides an elegant and accessible method for practicing engineers who study physical systems described by PDEs. Simulation examples, closed-loop stability analyses, comparisons to alternative control methods, and extensions to other models are also included.

References

References
1.
Avalos
,
G.
, and
Lasiecka
,
I.
,
1996
, “
Differential Riccati Equation for the Active Control of a Problem in Structural Acoustics
,”
J. Optim. Theory Appl.
,
91
(
3
), pp.
695
728
.10.1007/BF02190128
2.
Aksikas
,
I.
,
Fuxman
,
A.
,
Forbes
,
J. F.
, and
Winkin
,
J. J.
,
2009
, “
LQ Control Design of a Class of Hyperbolic PDE Systems: Application to Fixed-Bed Reactor
,”
Automatica
,
45
(
6
), pp.
1542
1548
.10.1016/j.automatica.2009.02.017
3.
Ferrari-Trecate
,
G.
,
Buffa
,
A.
, and
Gati
,
M.
,
2006
, “
Analysis of Coordination in Multi-Agent Systems Through Partial Difference Equations
,”
IEEE Trans. Autom. Control
,
51
(
6
), pp.
1058
1063
.10.1109/TAC.2006.876805
4.
Zariphopoulou
,
T.
,
1999
, “
Optimal Investment and Consumption Models With Non-Linear Stock Dynamics
,”
Math. Methods Oper. Res.
,
50
(
2
), pp.
271
296
.10.1007/s001860050098
5.
Aamo
,
O. M.
,
Krstic
,
M.
, and
Bewley
,
T. R.
,
2003
, “
Control of Mixing by Boundary Feedback in 2D Channel Flow
,”
Automatica
,
39
(
9
), pp.
1597
1606
.10.1016/S0005-1098(03)00140-7
6.
Vazquez
,
R.
, and
Krstic
,
M.
,
2007
, “
Explicit Output Feedback Stabilization of a Thermal Convection Loop by Continuous Backstepping and Singular Perturbations
,”
2007 American Control Conference
(
ACC
), pp.
2177
2182
.10.1109/ACC.2007.4282793
7.
Del Vecchio
,
D.
, and
Petit
,
N.
,
2005
, “
Boundary Control for an Industrial Under-Actuated Tubular Chemical Reactor
,”
J. Process Control
,
15
(
7
), pp.
771
784
.10.1016/j.jprocont.2005.03.004
8.
Doyle
,
M.
,
Fuller
,
T.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
9.
Fuller
,
T.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.10.1149/1.2054684
10.
Forman
,
J.
,
Bashash
,
S.
,
Stein
,
J.
, and
Fathy
,
H.
,
2011
, “
Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A93
A101
.10.1149/1.3519059
11.
Lions
,
J.
, and
Mitter
,
S.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
, Vol.
396
,
Springer
,
Berlin
.
12.
Lasiecka
,
I.
, and
Triggiani
,
R.
,
2000
,
Control Theory for Partial Differential Equations: Continuous and Approximation Theories
,
Cambridge University Press
,
Cambridge, UK
.
13.
Bensoussan
,
A.
,
Da Prato
,
G.
,
Delfour
,
M. C.
, and
Mitter
,
S. K.
,
2007
,
Representation and Control of Infinite Dimensional Systems
,
2nd ed.
Birkhauser
,
Boston, MA
.
14.
Curtain
,
R. F.
, and
Zwart
,
H. J.
,
1995
,
An Introduction to Infinite-Dimensional Linear Systems Theory
,
Springer
,
New York
.
15.
Hulsing
,
K.
,
1999
, “
Methods for Computing Functional Gains for LQR Control of Partial Differential Equations
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
16.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
(SIAM Advances in Design and Control), Society for Industrial and Applied Mathematics, Philadelphia, PA.
17.
Di Domenico
,
D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
ASME J. Dyn. Sys., Meas., Control
,
132
(
6
), p.
061302
.10.1115/1.4002475
18.
Ravindran
,
S.
,
2000
, “
A Reduced-Order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition
,”
Int. J. Numer. Methods Fluids
,
34
(
5
), pp.
425
448
.10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
19.
Xu
,
C.
,
Ou
,
Y.
, and
Schuster
,
E.
,
2011
, “
Sequential Linear Quadratic Control of Bilinear Parabolic PDEs Based on POD Model Reduction
,”
Automatica
,
47
(
2
), pp.
418
426
.10.1016/j.automatica.2010.11.001
20.
Park
,
H.
, and
Kim
,
O.
,
2000
, “
A Reduction Method for the Boundary Control of the Heat Conduction Equation
,”
ASME J. Dyn. Sys., Meas., Control
,
122
(
3
), pp.
435
444
.10.1115/1.1286365
21.
Collinger
,
J.
,
Wickert
,
J.
, and
Corr
,
L.
,
2009
, “
Adaptive Piezoelectric Vibration Control With Synchronized Switching
,”
ASME J. Dyn. Sys., Meas., Control
,
131
(
4
), p.
041006
.10.1115/1.3117189
22.
Burns
,
J.
, and
Hulsing
,
K.
,
2001
, “
Numerical Methods for Approximating Functional Gains in LQR Boundary Control Problems
,”
Math. Comput. Modell.
,
33
(
1
), pp.
89
100
.10.1016/S0895-7177(00)00231-4
23.
Moura
,
S.
, and
Fathy
,
H.
,
2011
, “
Optimal Boundary Control & Estimation of Diffusion-Reaction PDEs
,”
American Control Conference (ACC)
, pp.
921
928
.
24.
Athans
,
M.
, and
Falb
,
P.
,
2007
, “
Optimal Control: An Introduction to the Theory and Its Applications,
Dover Publications
,
Mineola, NY
.
25.
Kuo
,
B.
, and
Golnaraghi
,
F.
,
2003
,
Automatic Control Systems
, Vol. 1,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Freudenberg
,
J. S.
,
2008
,
A First Graduate Course in Feedback Control
,
University of Michigan
,
Ann Arbor, MI
.
27.
Polianin
,
A. D.
,
2002
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
,
CRC Press LLC
,
Boca Raton, FL
.
28.
Smyshlyaev
,
A.
, and
Krstic
,
M.
,
2007
, “
Adaptive Boundary Control for Unstable Parabolic PDEs—Part II: Estimation-Based Designs
,”
Automatica
,
43
(
9
), pp.
1543
1556
.10.1016/j.automatica.2007.02.014
You do not currently have access to this content.